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Abstract

Formulae are given for a least-squares line on an 0O-C
diagram, with calculation of the period and epoch and their
mean errors.

* % % * %
1. Introduction

At the Cornell meeting of the AAVSO in the spring of 1988, one of
the members asked me about the precision of variable-star periods. At
the Maria Mitchell Observatory we almost always give a newly revised
period in the form "period + mean error." He showed me the way he had
assigned a plus-or-minus value to a period he had calculated. It
seemed to give a good estimate of the uncertainty, but it was not as
rigorous as using the method of least squares to put a line on an 0-C
diagram. An optional step in that method gives the mean errors. He
suggested that I write up the procedure for this Journal in the form of
formulae that would be handy for variable star observers.

Typical presentations of the method either omit the calculation of
errors (e.g., Swartz 1973) or they give considerably more information
than is needed by a user. (Chauvanet 1893; Brandt 1976). They include
proofs, which necessarily rely on calculus, and the formulae tend to be
in a notation that looks intimidating, with numerous subscripts or
superscripts, and special ways of indicating operations like forming
sums of products.

Using the method, as opposed to proving it, is fairly
straightforward, although somewhat tedious. This paper is an attempt
to present the formulae in the form of a recipe that can be used by
anyone who is interested in results and willing to do without the
mathematical derivations. No knowledge of calculus is needed to use
the recipe. A little algebra is helpful but not really anything beyond
recognizing that A=V/W means that the value of A 1is the result of
dividing the value of V by the value of W. Multiplications will be
shown in the recipe with an asterisk, as 1is usual 1in computer
languages. Thus A times X is shown in this paper as A*X, rather than
in the usual algebraic form, AX. All of the steps of the recipe are in
the numbered equations. The only unknown in each equation at the time
it is reached is on the left hand side. The intervening text provides
some amplification but is not strictly necessary for using the method.

The procedure described is specifically for least-squares lines in
O-C analysis, but the central part of the process, equations (10)
through (24), applies to other plots of Y against X as well.

2. Astronomical Background

O-C analysis starts with knowing the approximate period and epoch

of a variable star. (The epoch is a chosen time of maximum for a
pulsating star, minimum for an eclipser. The text will say "maximum,"
letting the reader make the substitution if necessary.) The aim is to

use observed times of maximum to find 1) corrections to the old period
and epoch and 2) the mean errors of the new period and epoch.
Information about both is contained in the deviations, 0-C, of observed
times of maximum from times computed using the old epoch and period.
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As each step is introduced it will be applied to observed maxima of
V1281 Agl (Nr. 3668 in Gessner 1973) which is classified as a possible
W Virginis star (Kholopov 1985).

The first two steps in the recipe are to assemble the elements.

M = (old) epoch of maximum = 7588 (1)
P = (old) period = 32.05 days (2)

The next two are to tabulate the observations.
N = number of observed times of maximum = 9 (3)
O = observed times of maxima (4)
The nine values of 0O for our sample star are in Table I, column }.
These and the epoch, M, are in the form JD-2430000. The next step 1s

tricky:

E = number of whole cycles between M and O. (5)
For our sample star these, too, are copied directly from Gessner’s
paper to Table I, column 2. But what if someone had not already
assigned these numbers? E 1is usually the closest integer to the
quotient (O-M)/P. Sometimes we are unsure of the number of cycles
between widely spaced observations. That happens when we have lost the

cycle count through not knowing the period accurately enough. In that
case, however, we are not ready for a least-squares refinement.

C = computed times of maximum (6)
= M + P*E
Y=0-cC (7)

The nine values of C and Y for the sample star are in columns 3 and 5.

The 0-C values, called Y here, are well known indications of the
guality of the original epoch and period. If a graph of Y against E
looks like a line, then the period has been reasonably constant during
the time interval covered by the observations, and the characteristics
of the line tell us how to improve M and P. If not, then we must
abandon the hope of describing the variation with a constant period.

For our sample star, a line looks reasonable. Figure 1 is a plot
of Y, not against E, but, for reasons that will become clear later,
against a quantity, X, defined by

D = average of the N values of E = 3.556 (8)
X = E - D. (9)

If the observations and the adopted epoch and period had been perfect,
then all of the values of Y would be zero and the points would all lie
exactly on the X axis. In the real case of V1281 Aqgl, the points
suggest a horizontal line on or near the X axis, but scatter rather
widely around it. The fact that the slope of the implied line is near
zero means that Gessner’s period is a good one. The scatter around the
implied line means that the values of Y have uncertainties of perhaps a
few days.

Now it 1is time to leave the astronomy and see how to find the
equation of the best line that can be drawn through scattered points.
Later we shall return to astronomy to find both the corrections that
need to be applied to the old elements, and the mean errors of the new
period and epoch.
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3. Least-Squares Lines

If the points on a graph of Y against X all lie on a line, then
the values of Y are related to the corresponding values of X by an
equation of the form Y = A*X + B. It would be possible to take any two
values of Y and the corresponding values of X, form two equations, and
solve for the two unknowns (A and B) by methods taught in algebra._ The
case under consideration, however, consists of more than two points.
The points suggest a line but do not fall exactly on it. No matter how
we choose A and B, we cannot make A*X+B come out exactly equal to the
corresponding value of Y. We will instead get some nearby value which
we shall call L. It defines a point exactly on a line, above or below
the observed point.

The method of least squares is designed to choose A and B to make
the values of L come out as close to the values of Y as possible. The
method is designed specifically for cases, like the one under
consideration, where Y is subject to error, while X is known exactly or
almost so. How should we choose A and B? Various authors (e.g.,
Chauvanet 1893, sections 28 and 29) prove that the best values of A and
B in this case are the ones which satisfy these two equations:

W*A + Z*B v

Z*A + N#*B

I

U,

in which U, V, W, and Z have the values given by the next steps of the
recipe.

U = sum of the N values of Y = 0.40 (10)
V = sum of the N values of X*Y = 86.2 (11)
W = sum of the N values of X° = 47994 (12)
Z = sum of the N values of X = 0.00 (13)

The sum of the 9 values of X did not come out to be exactly zero in
Table I, but that is only because the values of X had to be rounded. 2
is really exactly zero because of the way X is defined: E minus the
average value of E. One of the reasons for using X instead of E in the
least squares solution is that the equations for A and B become simpler
when Z is zero:

W*A = V
N*B = U.
Now each equation has only one unknown. The recipe steps for A and B

are straightforward:

A =V/W = 0.0018 (14)

B =U/N = 0.044 (15)
The question of rounding has come up. How do we know how many places
to carry in the numerical work? Like most workers, I often carry more
places than needed. In fact it 1is easiest with a calculator or
computer not to do any rounding of intermediate results if the machine
can use them without the operator having to write them down. For the

purposes of Table I and the numerical values given in the steps of the
recipe, I printed out all intermediate wvalues, rounding as seemed
appropriate, usually carrying one or two more places than are
significant. It is always good to carry at least one extra, to make
sure that rounding errors remain small compared with the observational
errors. We shall know at the end which ones were extra, when we see
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the size of the real errors.

In order to find the errors, we need first to see how close the
line comes to the points. Points on the line all satisfy the equation

L = A*X + B. (16)
For each value of X we get a value of L (column 8) which ought to be

close to the corresponding value of Y. Their difference is called the
residual of the point from the line:

R=1Y - L. (17)
The sum of the squares of these residuals (column 9 and 10) is an
important quantity. When A and B are chosen by the formulae of least
squares, then this sum is as small as possible, a circumstance which
has given the method its name. The next steps in the recipe are to
find and use that sum.

Q = sum of the N values of R? = 48.80 (18)
F = Q/(N-2) = 6.971 (19)
G = F/W = 0.000145 (20)
H = F/N = 0.7746 (21)

The mean errors are

m.e. of Y = square root of F = 2.6 (22)
m.e. of A = square root of G = 0.012 (23)
m.e. of B = square root of H = 0.88. (24)

At this point we know the equation of the line and the precision with
which it is known. Equation (16), with the values of A and B from
equations (14) and (15), was used to plot the line in Figure 1.

Equations (10) through (24) may be used for any least-squares
line, not just an 0-C diagram, provided that the errors are in Y but
not in X, and provided further that the value of Z has been set to zero
as this recipe did in equations (8) and (9). A few more steps are
needed to produce the astronomical results which were the motivation
for the calculation.

4. The New Elements and Their Errors

It can be shown that the new linear elements of the variable star
are

New period = 01d period + A (25)

New epoch O0ld epoch + B - A*D. (26)
The mean error of the new period is
m.e. of the new period = m.e. of A = 0.012. (27)

The mean error of the new epoch is rather more complicated since the
epoch depends on both A and B unless D happens to be zero. First let

S =H+ G*D2 = 0.7764 (28)
then,
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m.e. of the new epoch = square root of S = 0.88. (29)

Equations (28) and (29) do not apply to all least squares lines but
only when the sum of the values of X is zero, another good reason for
defining X by equation (9). In the case of V1281 Agl, the new elements
and their mean errors are

New Period 32.052 + 0.012

New Epoch = 7588.02 + 0.88.

It would be all right to round the period to 2 decimal places, but it
is considered best to quote enough digits so that the last one is
uncertain by more than just one or two units. Considering the size of
the mean error of the epoch, however, we are not justified in carrying
2 decimal places the new epoch. The astronomical result of all this
calculation is, then,

D (may) = 2437588.0 + 32.052 E.
+0.9  +0.012

The only real improvement over Gessner’s result, which was, of course,
based on the same data, is that the method of least squares has given
us the precision of the elements.

The notation seems to imply that the new period and epoch are
required to lie in the indicated ranges, but no such implication is
intended. The theory of least squares and the definition of mean error
state that the true (and unknowable) values of the gquantities have
about a 68% probability of lying in the range defined by their mean
errors. The mean error of Y is the measure of how close the points do
come to the line. If the residuals are due to observational errors
then 68% of a large number of cbserved points should fall no farther
from the line, vertically, than + the mean error of Y.

A few words about the source of these deviations. The mean error
of Y is calculated from the residuals, R. It evaluates the
disagreement between the line and the observations, without placing the
blame on either the line or the observations. It is sometimes called
observational error, and the 68% probability in the previous paragraph
refers to the case of random errors such as inevitably afflict

observations. But what if the period is not constant? Then even the
best line provides only some sort of an an average period, and the
residuals contain a contribution from real change in period. In the

case of V1281 Agl the mean error came out to be 2.6 days. While this
is nearly 10% of the period, it is not surprisingly large for this
star. ©Not only does the light curve have a rather broad maximum, which
prevents O from being sharply defined, but Gessner also suggests that
the type may be semiregular (SRd) rather than W Virginis. Individual
cycles may well have been longer or shorter than 32.052 days.

In our sample case, the deviations from the line look random. In
some cases they show a systematic trend (e.g., Provencal 1986). The
next most complicated least-squares situation is to put a parabola
through the points on an 0-C diagram, indicative of a constant rate of
change. That means calculating three gquantities. Instead of
equations (14) and (15) for A and B, there will be three equations for
three unknowns and, no matter how we define X, there will be at least
two unknowns in each equation. Having already almost exhausted the
alphabet, this recipe ends with the line.

An instructive final application of linear least squares is to see
what would have happened if the first observation, at E = -194, had not

been available. The result of a recalculation of equations (3) through
(29) with the remaining 8 observed maxima is
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D (max) = 2437588.0 + 32.052 E.
+1.6  +0.045

The much larger mean error of the period is an example of a situation
familiar to variable star workers. The period of a star (specifically
the average period over a number of cycles) is more precisely known
when the number of cycles is greater. The larger mean error of the
epoch is more apparent than real. An epoch is most reliably determined
when it has been chosen to lie near the average value of the observed
times of maximum, rather than significantly earlier, as in this case,
or significantly later. An option for variable star workers is to add
(or subtract) an appropriate number of cycles to (or from) the original
epoch, then use least squares to improve the resulting alternative
epoch.

5. Summary

A method has been given, without derivation, for the improvement
of linear elements through least squares analysis of 0-C data, with
emphasis on the determination of the mean errors of the revised
elements. The steps are in the numbered equations (1) through (29) in
the order in which they are to be carried out. The central part of the
procedure, equations (10) through (24), is applicable to least-squares

lines in general. Computer programs us.ng this method are in use at
the Maria Mitchell Observatory in our studies of periodic variable
stars. our variable star research receives support from National

Science Foundation grant AST86-19885.
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TABLE I

V1281 Agl: Least-Squares Calculation of Linear Elements

o) E c X Y x? X*Y L R R?
1370 =194 1370.30 -197.556 -0.30 39028.4 59.27 -0.31 0.01 0.00
7588 0 7588.00 -3.556 0.00 12.6 0.00 0.04 -0.04 0.00
7875 9 7876.45 5.444 -1.45 29.6 -7.89 0.05 ~-1.50 2.25
7910 10 7908.50 6.444 1.50 41.5 9.67 0.06 1.44 2.07
7940 11 7240.55 7.444 -0.55 55.4 -4.09 0.06 ~0.61 0.37
8675 34 8677.70 30.444 -2.70 926.8 -82.20 0.10 -2.80 7.84
8940 42 8934.10 38.444 5.90 1477.9 226.82 0.11 5.79 33.52
9350 55 9350.75 51.444 -0.75 2646.5 -38.58 0.14 -0.89 0.79
9670 65 9671.25 61.444 -1.25 3775.4 -76.81 0.15 =-1.40 1.96
SUMS 32 -0.004 0.40 47994.1 86.19 0.00 48.80
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Figure 1. O-C diagram for V1281 Agl. Y is 0-C; X is related to {:he
cycle count, E, through equations (8) and (9). The least-squares line
is shown.
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