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Abstract

Computer programs are being developed for the simulation of stellar
pulsation and stationary stellar atmospheres. This paper describes a
developmental version of the pulsation program, with which the velocity
curves may be synthesized from linear modes.

1. Introduction

I am developing two interactive programs for personal computers to be used for
instruction in astrophysics:

1) A stellar pulsation program will permit users to specify the mass, radius, and
luminosity of a star, and the program will construct a static envelope and then
evaluate linear radial modes as well as non-linear motions. Pulsational variations of
user-selected variables will be displayed by color animation.

2) A stellar atmosphere program will construct a stationary model from specified
surface temperature and gravity and then display it in a variety of optional graphs.
Three models may be held in memory at once and may be superposed and compared
graphically. Limb-darkening and the continuous spectrum are computed, and atomic
absorption-line data may be specified for the calculation of individual line profiles.
Black body radiation may be imposed on the top of the atmosphere to illustrate the
effect of a close companion.

This work is part of the CUPS Project (Consortium for Upper-Level Physics
Software) and is sponsored in part by the National Science Foundation, IBM
Corporation, George Mason University, and John Wiley and Sons. My participation is
supported by the Smithsonian Astrophysical Observatory. The Project consists of 30
physicists who are developing user-friendly software and accompanying texts for use
in nine upper-level physics courses. The final materials (including Pascal source code)
are expected to be ready in 1995 in both PC and Macintosh versions.

The program demonstrated in this paper is a developmental version of a portion
of the stellar pulsation program. It carries out a Fourier synthesis of stellar velocity
and radius curves after the user specifies the amplitudes and phases of the first four
modes. In its current version, the computer screen provides graphical display of the
phases and time-dependent amplitudes of the individual Fourier components, so the
user may see how the various components contribute to the shapes of the curves. This
program does not represent the physics of the pulsation, merely the motions of linear
modes, so it is more properly called an animation.

This paper discusses the use of this program to explore the composition of
velocity curves. The light variations of Cepheids are similar in shape to the variations
of outward surface velocity generated by this program, so the program can be
considered to provide light-curve synthesis as well.
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2. The Hertzsprung Relation

In 1926, the Dutch astronomer Eijnar Hertzsprung pointed out that the shapes of
the light curves of classical Cepheids show a progression with period. Stars with
periods in the range of 6-10 days tend to have a bump on the descending branch of
the light curve and stars with periods of 10-17 days a bump on the ascending branch.
Since then, the same pattern has been found among the velocity curves. Before
showing how the animation program described in this paper can be used to explore
the meaning of this pattern, we must describe the linear modes of pulsation.

2.1 Modes of pulsation

Many types (virtually an infinite number) of spherically symmetric motions are
available to a pulsating star. The simplest are called "modes." In a mode, all the
stellar layers move with a single period, and they all come to rest at the same instant.
(In a periodic motion like this, it is handy to measure time from the start of each
cycle, and this is called the "phase").

In the fundamental mode, illustrated in Figure 1, all particles move in
synchronism and in the same direction. The amplitude of the motion decreases as we
go deeper, due to the higher density of the central regions of the star.

In the first mode (Figure 2), the motions are synchronous but the outer layers
move inward while the inner layers move outward. There is an intermediate layer
that is stationary; this layer is called a "node.” The first mode has a shorter period
than the fundamental (zeroth mode), because the gas is working against itself in a
smaller space interval, corresponding to a shorter wave length. That causes the period
to be shorter. These are "standing" waves because all peaks occur at the same time,
and the waves don’t seem to be moving anywhere.

2.2 Relationship between radius and velocity changes
Figure 3 shows a typical relationship between velocity and radius changes for the
surface layers in a fundamental mode.

2.3 Phasors and an imitation of RV Tauri stars

Time and phase move ahead uniformly, but the stellar layers move up and down
with a periodic motion. The "phasor” is a rotating arrow which can represent this
oscillatory motion. Figure 4 shows the phasor (or rotating arrows) for two modes;
each phasor rotates uniformly like the hand of a clock, and its upward component is
the velocity at a particular instant.

What happens when the star moves in two modes at once? The behavior depends
on the precise periods and phases of the two modes. In order to predict the behavior,
we construct the composite phasor by attaching one arrow to the tip of the other, as in
Figure 5.

In the example of Figure 5, I have assumed that the second mode has a period
exactly half that of the fundamental. The motion repeats because two cycles of the
second mode take exactly the same time as one cycle of the fundamental.

Figure 6 shows the motion inside the star. It is the result of standing waves with
phase and amplitude relations that change with depth. It looks like a running wave,
because the peak comes progressively later in deeper layers.

2.4 Analyzing the Hertzsprung relation

Simon and Schmidt (1976) have suggested that the Hertzsprung relation is the
result of the superposition of the fundamental and second mode in classical Cepheids.
The nature of the superposition depends on the period of the star, and the result is
the pattern of humps described by Hertzsprung. Simon and Lee (1981) have also
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shown how the light curves of other classical Cepheids can be built up by adding
modes (Fourier synthesis).

Let us explore this idea by first building a simple model that shows a velocity
hump on the ascending branch. Figure 7 shows the result. It was achieved by adjusting
the phase of the second mode until the resulting curve has the appropriate shape.

With a very slight change in the relative phases of the modes it is possible to
produce a hump on the descending branch, shown in Figure 8. Looking closely at
Figures 7 and 8 reveals an interesting feature of the Hertzsprung relation. The
apparent shift of the hump from one side of the primary maximum to the other is an
illusion. What happens is that the source of the primary maximum changes. That is,
the primary maximum corresponds to one portion of the second mode for shorter
period stars and to the other portion of the second mode for longer periods. This is
the type of insight that can come from the simple animations possible with this
program.

Figure 9 shows the interior displacements and the surface velocity of a star
showing a hump. This figure illustrates that the appearance of a running wave - in
which the peak is progressively later in adjacent layers - can be generated by the
superposition of two standing waves whose amplitudes change with depth. That is, two
superposed modes can give the appearance of a running wave and not only give the
appearance, but also behave like a running wave. In fact, a running wave is nothing
but a superposition of standing waves.

3. Concluding Remarks

This computer program makes the simplifying assumption that the pulsation
consists of sinusoidal modes whose phases, periods, and amplitudes may be adjusted
arbitrarily. By matching the behavior of a well-observed star with the curves produced
by the program in Fourier synthesis, it is possible to determine the modal properties
of a pulsation - that is, to measure the phases and amplitudes. This can be achieved in
a matter of minutes with this program. But the program cannot explain why these
values are found in a particular star. That requires a true simulation. The Fourier
synthesis has sharpened the question posed by the HertZSprung relation, but it has not
explained the phenomenon.

This suggests that, although the virtue of this animation program may be
primarily educational, the program may also help researchers focus and interpret
their work with complex simulation programs.
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Figure 1. In the fundamental (or zeroth) mode, all layers move in synchronism and in
the same direction. The amplitude of motion decreases with depth in the star.
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Figure 2. In the first mode, there is an intermediate stationary layer, or node. The
inner and outer layers move in opposite directions, and the period of the pulsation is
shorter than for the fundamental mode.
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Figure 3. Changes of position (upper) and outward velocity (lower) in the surface
layers of a spherically symmetric mode of oscillation. In classical Cepheids, the time
of greatest outward velocity typically corresponds to the maximum of the light curve.
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Figure 4. The left hand portion shows the velocity curves for the fundamental (top)
and for a mode whose period is half the fundamental period. Each of these sinusoidal
motions may be represented by the upward component of a rotating arrow, called a
"phasor." The length of the phasor, on the right, shows the amplitude of the motion,
and the angle measured clockwise around the circle is the phase of the motion at any

instant.

Figure 5. If a star pulsates in two modes simultaneously, its motion can be constructed
by attaching one phasor to the tip of the other. This combination acts like an epicycle,
and the upward component of the resulting arrow is the velocity at any instant.
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Figure 6. The motions inside a star oscillating in two modes depends on the phases
and amplitudes of the modes. This figure corresponds to the velocity curve of Figure
S5, and the pattern resembles a running wave, in which the peak comes at
progressively later times as we go deeper into the star.
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Figure 7. Velocity curve of a star oscillating in two modes whose periods are in the
ratio 2:1. The phase of the faster mode was adjusted to give a hump on the ascending

branch of the velocity curve.

Figure 8. Velocity curve of a star oscillating in two modes whose periods are in the
ratio 2:1. The phase of the faster mode was adjusted to give a hump on the descending

branch of the velocity curve.
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Figure 9. Fourier synthesis of the interior motions (upper) and surface velocity
(lower) for a star oscillating in the zeroth and the second mode. In constructing this
figure, the ratio of periods was assumed to be 2:1, and the relative phases and
amplitudes were arbitrarily adjusted.
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