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Abstract

Standard O-C (Observed-Computed) analysis assumes that the residual devia-
tions of observed times from linearity are independent random variables. As
Koen and Lombard (1993) point out, when a star’s period is not constant but
fluctuates about a constant mean value, this assumption leads to false confir-
mation that the period is changing. They supply an alternate test, CUSUM
(CUmulative SUMs), which amounts to a series of scaled comparisons of
“before” and “after” series averages. It can be extended by computing a
separate scale factor for each individual CUSUM, yielding the SCUSUM test.
This can be further extended to the SCUSUM+ test by including the effect of
lag-1 correlation of the data.

1. Introduction

We define an individual period for a periodic phenomenon as the time between
consecutive occurrences of some notable event, e.g., maximum or minimum brightness
of a variable star. If we know the true times t_, n = 0,1,2,..., N for N+1 consecutive

events, then we can compute N successive values of the true period
‘Ttn = Tn - Tn—l €))]

However, we don’t know the true times T rather we obtain estimates T, which enable
us to compute estimates of the periods

P=T-T, @

For simplicity’s sake, I will assume that all times are observed, none are missing from
the sequence.

We can then study the series of observed times T  or the series of estimated periods
P , to search for period changes. The result we obtain will depend on the error model
we use, and on the question we ask. Searching for period change actually raises two
questions: whether the period is constant, and whether the mean period is constant.
Periods often exhibit random fluctuations about a constant mean value. In this case,
although we might be able to demonstrate nonconstancy of individual periods, the
strongest tests are required to establish any evolutionary change for the mean period.

2. 0-C model

A standard tool for detecting period changes (especially for variable stars) is O-C
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(Observed-Computed) analysis. One of the assumptions forming what I will call the
linear O-C null hypothesis is that the period is truly constant

T, = ©)
This is the hypothesis for linear O-C regression; in general, O-C assumes that the period
is a smoothly varying function of cycle number, i.e., that it has no random fluctuations.
The general statistical behavior is the same as that of the linear model.

The true event times are linearly related to cycle number
T =1,+np (4)
The observed times differ from these by some measurement error
T =1 +n (%)

The deviations T} _have some expected value (which for this analysis I take to be zero)
and some variance

<n,>=0 <ni>=n? (6)

where brackets “< >” indicate the expectation value of the enclosed quantity. The
estimated periods exhibit deviations according to

Pn o + nn - nn-] (7)
This is the linear O-C model.

Using trial values for the elements T and p, we can compare the observed times T

to the computed times, generating residual deviations, the “observed-minus-computed”
values; these are the input data to O-C analysis.

We can then regress the residuals against cycle number, by the method of least
squares. Regressing onto a straight line enables us to refine the constants T and u; we

obtain thereby not only estimates of the regression constants, but also confidence limits

for the constants, enabling us to evaluate the validity of the regression. However, as
Koen and Lombard (1993) have pointed out, these confidence limits are based on the
oft-unwarranted assumption that the phenomenon is periodic with a constant period.

Of course we can compute the average period

P=(I/N)ZP =(I/N)(Ty,—T)
®)
= (I/N) (Np + My~ 110) =H + (TIN - n())/N

The expectation value of the average period, and its variance, are
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<P>=L
®
<P2> — P2 = 22N>
In this case the variance of the average period goes as 1/N, less than the variance of an

ordinary average, which goes as 1/N. This is because the period is truly constant; the
times T, and T}, constitute a direct observation of N times the period.

Despite this serendipitous accuracy, O-C analysis is even better. This is no
surprise; the average period is determined by only the first and last observed times T
and T while O-C analysis includes additional information from all the other observa-

tions. Therefore when the above assumptions are fulfilled (constant period, only
measurement errors), O-C analysis provides an unbiased estimate of the period whose

variance goes as 1/N3

<P0-C> =N
o y2e 12n? (10)
= NINFD(NR2)

A common further analysis is to regress on a quadratic form

2
<1;’O—C

T =r1,+nu+Cn’ (11)

where the constant C is the quadratic coefficient. If this constant is nonzero (within its
confidence limits), it is taken as evidence that the period is changing, and the quadratic
term gives an estimate of the rate of change of the period. Another common practice is
to fit straight line segments to pieces of the O-C diagram. Each line segment represents
a constant period; each different line segment represents a different period.

3. CUSUM model
Physical systems often exhibit periods which are not constant, but fluctuate about

a constant mean value. Therefore the true periods may not be constant, but a random
variable with constant mean and unknown variance

<n>= U <u?>—u?=0? (12)
Hence to the n true period we can assign the form

T =pt Gn (13)

where the deviation Gn represents a period fluctuation, not an error in measurement. The
event times deviate according to

n

T =T, tnu+t kZ_IIGk (14)
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If we ignore measurement errors of the critical event times, then the observed times and
periods are

P=nm=p+06
n n n
n (15)
T =1 =1,+tnu+Z0
k=1

This is the CUSUM model.

Now the problem with O-C analysis emerges: the deviation in Tn includes the
accumulation of all the preceding period fluctuations. In fact these accumulated
deviations are random-walk sums; hence they do not exhibit the simple error structure

postulated in (6); if we apply O-C analysis to data with this error structure, the
confidence limits on estimated parameters will be much mistaken.

If we use the observed time of cycle zero T as our provisional choice of T, and the
average period P as our provisional period, then the O-C values are simply

k
C.= Z(P,—P) (16)
1

a::

This is identical to Koen and Lombard’s (1993) and Williamson’s (1988, see also Isles
and Saw 1989) statistic to test for a change in the series mean, called CUSUM
(CUmulative SUM), also known as the span test. The difference between O-C and
CUSUM is that O-C values are treated as independent random variables, while CUSUM
values are treated as random-walk sums.

To form a test statistic, they scale the C values by the standard deviation of a
random-walk sum,

S = Std.Dev.(Z¢€) = YN 17)

where N is the number of data, and 0 is an estimate of the standard deviation of the
periods. S is not the actual standard deviation ofany C, value, but it serves as a perfectly
good scale factor (it has the correct N- and 6-dependence). The scaled CUSUM values
are

C,=C/S=C/[6VN] (18)

and the test statistic is
D, = max |C| | (19)

For large N it follows the Kolmogorov-Smirnov distribution, given approximately by
Prob.(D,>d) = 2¢2¢* (20)

For smaller N, critical values of the CUSUM test are calculated by computer simulation
(Williamson 1985). Williamson’s computations assume as the null hypothesis that the
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series mean is constant, and that the data are a normally distributed random variable.

4. SCUSUM

CUSUM does not in fact sum random fluctuations €, but their deviations from
average. The consequences emerge if we cast it in the form

k
C,= P —kP
a=1
k N
= ZP-kKNZP @1
a=1 a=1 .
k N
= X(1NP -kKNZP
a=1 a=k+1

Hence we have that

k N
NC, =X (IK)P,~X (I/(N-K)P,

Py 22)

= xbefore - Xaﬁer

so the k™ CUSUM value is proportional to the difference between the series averages
before and after time t, . Therefore CUSUM is formally equivalent to a direct compari-

son of “before” and “after” averages. In this light, the significance of a CUSUM test is
crystal clear. A standard computation of the variance inherent in the comparison of two
averages reveals that actual standard deviation for a single CUSUM is

S, = 0V/k(1-W/N) 23)

The salient point is that each CUSUM value has a different scaling. In standard CUSUM
analysis, all values are assigned the same scale factor, so that values near the beginning
or end of the time series are scaled by too large an amount; CUSUM exhibits reduced
sensitivity to period changes which occur early or late in a time series.

We can remedy this by computing a set of individually scaled CUSUM values,
which I will call SCUSUM values

¢, =C/[0Vk(1-k/N)] (24)

With this scaling, any single Ek is a normally distributed random variable with mean 0
and variance 1. The test statistic is

~

D

= max [€,| (25)
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Note that the cycle corresponding to the maximum |C,| is likely to be different from the
cycle corresponding to the maximum |C'|.

Interestingly enough, the individual scale factors for CUSUM statistics were
derived over 60 years ago (but not used) by Eddington and Plakidis (1929). Later Sterne
(1934) elucidated the same scheme, but rejected the individually scaled CUSUM test in
favor of his own test for a change in the series mean. The primary difficulty is that
because the statistics for different k values are so strongly correlated, the probability
distribution of the maximum of all the |c,| values is unknown.

This objection is overcome by our ability to test computer-generated data. Table
1 below lists the numerically determined critical values for the SCUSUM test. These
values are generated using S to estimate the data variance 6. The tabulated value is the
average of 25 separate estimates (which permits a calculation of the standard deviation
associated with the value), each of which represents the correct percentile limit for 1000
SCUSUM tests in which the raw data are normally distributed. This method is identical

to that used by Williamson (1985) to determine critical values for the standard
CUSUM test.

Table 1. Critical values for max [SCUSUM)|, when estimating G by s

False-alarm probability

—===10%---- ~—=-5%---- 1% -=--0.5%----
N Ave Oye Ave Oy Ave Oy Ave o,

51 1.613 0.002 | 1.693 0.002 | 1.810 0.004 | 1.846 0.003
10 | 2.079 0.004 | 2.226 0.005 | 2.453 0.006 | 2.520 0.007
15 | 2.277 0.004 | 2.452 0.005 | 2.748 0.009 | 2.842 0.011

20 | 2.392 0.005 | 2.588 0.008 | 2.931 0.011 | 3.037 0.013
25 | 2.476 0.005 | 2.678 0.007 | 3.052 0.010 | 3.183 0.015
30 | 2.518 0.007 | 2.730 0.008 | 3.125 0.010 | 3.261 0.016

40 | 2.594 0.006 | 2.816 0.009 | 3.227 0.013 | 3.372 0.019
50 | 2.635 0.006 | 2.868 0.008 { 3.299 0.017 | 3.465 0.018
60 | 2.684 0.005 | 2.920 0.008 | 3.341 0.015 | 3.481 0.021

70 | 2.708 0.008 | 2.953 0.009 | 3.409 0.011 | 3.577 0.019
80 | 2.735 0.005 | 2.966 0.007 | 3.443 0.014 | 3.582 0.015
90 | 2.767 0.009 | 3.001 0.010 | 3.451 0.013 | 3.644 0.019

100 | 2.775 0.006 | 3.012 0.008 | 3.474 0.020 | 3.680 0.027
100 | 2.775 0.006 { 3.052 0.008 | 3.502 0.015 | 3.649 0.019
140 | 2.826 0.006 | 3.065 0.009 | 3.530 0.013 | 3.709 0.022

160 | 2.850 0.007 | 3.086 0.008 | 3.545 0.017 | 3.744 0.022
180 | 2.851 0.006 | 3.092 0.009 | 3.577 0.015 | 3.745 0.021
200 | 2.868 0.005 | 3.113 0.008 | 3.583 0.018 | 3.787 0.027

300 | 2.906 0.006 | 3.152 0.008 | 3.646 0.012 | 3.825 0.018
400 | 2.950 0.005 | 3.200 0.010 | 3.686 0.022 | 3.899 0.027
500 | 2.989 0.006 | 3.231 0.010 | 3.704 0.015 | 3.913 0.015
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5. SCUSUM+
The standard deviation responsible for the random walk is that of the periods
themselves, not that of the time estimates. For variable stars, we expect not only period

fluctuations as in (13), but also measurement errors of the critical times as in (5). Thus
the observed times are

n
T =t,tnp+20 +n (26)
k=1
and the observed periods deviate according to
Pn — K * 9n+ T‘n_ nn—l (27)

This is the SCUSUM+ model. Note that the limit 1} > 0 is ordinary SCUSUM,; the limit
0 = 0 is pure O-C.

The required scaling for SCUSUM+ is no longer (23) but

S, = vk (1-k/N) + 2n2 (1-k/N-+2/N?) (28)

The coefficient of 212 is always closeto 1, especially fork small or large (when it counts
the most), so we may use this approximation and define the SCUSUM+ values as

Cy

(o = . 29)
JkO? (1-k/N) + 212

The test statistic is again max |€k| and the probability distribution is the same as
SCUSUM.

This of course requires calculation of both 0 and 1. One way is

712 == Yl
(30)
02=s? +2y, =s>-2n°
where v, is the serial covariance at lag 1
) n
y,=1/ (N-1) Z(P,—P)®P,,,—P) (31)
k=1
and s? is the estimated variance of the observed periods
s* = 1/(N-1) [Z(P_—P)’] (32)

Another method is to compute variances for multiple periods (Blacher and Perdang
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1988); the sum Q, of k consecutive periods has a variance given by
<Q> — (kp)* = k6 + 212 (33)

By plotting the estimated variance of k-fold sums against k, and fitting a straight line,
we can estimate both the period variance 02 and the variance of the time measurements
T]2. These values are interesting in themselves: estimates of 0 and 1 have been
computed by this method for 391 Mira-type variable stars by Percy et al. (1990).

6. Sparse data

One of the great advantages of O-C analysis is that it does not require a complete
observational sequence: it can be applied with only a scattering of observed times, as
long as we are able to compute the cycle number of each observation. SCUSUM, as it
stands, cannot be so applied, because it requires estimating the variance inherent in the
periods themselves. A very incomplete observational sequence may not have any two
consecutive times, and therefore may not provide any direct estimates of individual
periods on which to base a variance computation. However, any two observed times
representing k cycles will provide an estimate of the sum of k periods. On this basis we
can estimate of the variance inherent in the periods.

Suppose we have n+/ observed times T, a=0,1,2,...,n, together with their
corresponding cycle numbers E . Let the first observed time correspond to cycle 0, the

last to cycle N (so E;=0, E =N). Then we can compute » period estimates P and their
corresponding cycle counts &

ka = Ea - Ea—l
(34)
Pa = (Ta - Ta-l )/ka

Because the entire observational interval covers N cycles, we have
Tk =N (35)

Since each Pa is the average of ka cycles,

<Pa> =L
(36)
<P2>= u’+ 0%k +2n*/k
The average period is given, as before, by
P= (Tn - TO)/N =X kaPa/N (37

and we can estimate the variance of the periods by

© American Association of Variable Star Observers ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1993JAVSO..22..145G&db_key=AST

FTI93JAVSOL ~227 T T45G0

Foster, JAAVSO Volume 22, 1993 153
>k P 2 — Np?
2 _ a a
g = (38)
n-1

The actual expected value of this estimate is
<s?>= 02+ 2n? [E(1/k)) — 1/N]/(n-1) (39)

The more sparse the data, the smaller is the second term; s? becomes a good estimate
of the period variance 2.

For sparse data, the maximum absolute SCUSUM value does not follow the same
probability distribution as outlined above. The SCUSUM test is too severe, because
most of the SCUSUM values are unobserved. For very sparse data, each separate
SCUSUM can be treated as a normally distributed random variable with mean 0 and
variance 1. However, the false alarm probability must be adjusted to account for the fact
that several separate tests are made (one for each SCUSUM value). Usually the false
alarm probability should be divided by the number of independent tests

Prob(effective) = Prob(desired) (40)
(# tests)

Because of the strong correlation among SCUSUMs, the number of “independent” tests
(for adjusting the false alarm probability) is less than the number of SCUSUM values,
and never more than 10. Further investigation is required on this particular.

References

Blacher, S., and Perdang, J. 1988, Testing for Chaos in Long Period Variables, in
Multimode Stellar Pulsations, Konkoly Observatory, p. 283.

Eddington, A. S., and Plakidis, S. 1929, Mon. Not. Roy. Astron. Soc., 90, 65.

Isles, J. E., and Saw, D. R. B. 1989, J. Brit. Astron. Assoc., 99, 121.

Koen, C., and Lombard, F. 1993, Mon. Not. Roy. Astron. Soc., 263, 287.

Koen, C., and Lombard, F. 1993, Mon. Not. Roy. Astron. Soc., 263, 309.

Percy,J.R.,Colivas, T., Sloan, W.B., and Mattei, J.A. 1990, Long-term changes in Mira
variables, in Confrontation between Stellar Pulsation and Evolution, ASP
conference series.

Pringle, J. 1975, Mon. Not. Roy. Astron. Soc., 170, 633.

Sterne, T. 1934, Harvard Circ. 386 and 387.

Williamson, R. J. 1985, The Statistician, 34, 345.

© American Association of Variable Star Observers ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1993JAVSO..22..145G&db_key=AST

