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Abstract

In many cases, a time series with very many observations can, by averaging
over an appropriate time span, be reduced to a manageable number of data
points with very little loss of information. I investigate the errors inherent
in this process.

1. Introduction

The quality of visual observations of variable stars is often called into question
because they exhibit arelatively high inherent scatter, usually about 0.2—-0.4 magnitude.
However, for stars with many observers, or a few prolific observers, the lack of “quality”
of a single visual observation is more than compensated by the large quantity of data
available. Yet we must pay a price for this bounty: any mathematical analyses performed
on such a very large number of data points (in some cases exceeding 50,000 for a single
star) will consume considerable computer time and memory. It is therefore often
advantageous to reduce the data, by some smoothing technique, to a smaller number of
more precise values. One of the most basic and most common methods is averaging. We
split the observed time span into small bins, usually of equal duration 7, averaging all
the data in a particular bin to generate a single reduced datum. We also obtain thereby
an estimate of the scatter G within each bin and an estimated error of the average itself
o/\N, where N is the number of data in the bin.

Often this is done without much consideration of the appropriate bin size. It should
be chosen large enough to encompass many data points, so that the reduced values are
as precise as possible. Yet it must be chosen small enough that the underlying signal does
not evolve significantly during the entire duration of the bin. We shall consider the effect
of the bin size T on the probable error associated with data averaging. It is sometimes
the practice to choose the midpoint of the bin as the “reduced time,” i.e., the time
coordinate of the reduced datum, and sometimes the practice of taking the average time
as the reduced time. We shall consider the errors associated with both choices.

2. Modeling the underlying signal

We assume that the data (which for illustrative purposes we will treat as variable star
magnitudes) are the sum of an underlying physical signal f(¥) and errors €, as

x =x(t)=f(t)te, . (1)

The errors are assumed to be independent random variables with mean zero and variance
ot
alie.,

<g,>=0 <@, y>=0, @

where enclosing any quantity in brackets “<>" denotes the expected value of a random
variable, or the average value of an observed variable. We further assume that the bin
size T is small enough that for the duration of the bin, the signal f(¥) can be described
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by a low-order polynomial (a Taylor’s series) about some time £ within the bin
fO=m+a@-1)+B@-1P+y@-1y+.. (3

We shall seek to estimate the value of the signal at the time 7.

Since we are only interested in the lowest-order non-zero error due to signal
variation, most of the time we can reliably model the signal over a small time span by
a simple linear approximation

SO =m +oa(t-t). 4)

However, this approximation is insufficient for two reasons. First, whenever the signal
reaches an extremum, its time derivative is zero and our simple approximation (4)
reduces to a constant. It therefore fails to model any variation of the signal at extrema;
we must include higher-order terms. Second, as we shall soon see, if the reduced time
£, is chosen as the average time within the bin, then the linear term (4) introduces no error
at all; we must include higher order terms to get to the first nonzero error term.

Including linear and quadratic terms is also insufficient. If we choose 7. as the
average time, then the linear term produces no error, and at any time at which the second
time derivative of the signal is zero, the quadratic term vanishes; the lowest-order term
actually contributing to the error will be the cubic term. We shall therefore adopt a cubic
polynomial in time

fO=m +a(t-1)+pE-1)+vy(-1), (5)
as the approximate form of the physical signal for the duration of the bin.

3. Extreme values of powers of time

We can now compute the expected value of the average of all the data in the bin. We
have (using the fact that <& > =0)

<x>=m +a<(t- 1>+ B<(t -1 P> +y<(@-1Y>.  (6)

The true value of the signal at time Z is 7. We therefore have three error terms, due to
1st, 2nd, and 3rd-order signal variations

E] = |a<(t - t0)>|9 (7)
E,=|B<(t-1,)>], (8)
E =y<(t-1,)>. ©)

Note that we have taken absolute values, to consider the size of the separate errors, not
their signs. I emphasize that (7), (8), and (9) are not errors associated with measurement
or observation; they refer only to the bias introduced by the averaging process itself.

First consider the 1st-order term. For data in a bin of width T, centered at time 0, all
data points have

|t |<3T. (10)
Therefore, if the reduced time is the bin midpoint (¢, = 0) then

|<@-t)>|=I<e>{<5T  (1,=0), (11)
whereas if the reduced time is the average time, then by definition

1, =<t>, (12)

so that
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|<(-t)>=0 (t,=average time). (13)
For the 2nd-order term, we clearly have for all data points
tf < (%T)2 , (14)
so that
<(-t)>< (%T)2 . (15)

This limit applies to both cases, when Z, = 0 and when / = average time.
Finally, for the 3rd-order term we have

[l <GTY, (16)
so that

|<(t-ty>|< LTy (1,=0). (17)
For the case #, = average time, we can compute the maximum possible | <(¢ - ,)*>| by
considering the extreme cases of », data points at # = —%T and n, data points at
t=+1T. We find that in all cases,

|<(t-t)y>|< GT)*/10 (t,=<r>). (18)

These are the extreme-case limits on absolute values of powers of time.
4. Extremes of polynomial coefficients

It remains to estimate upper limits for the polynomial expansion coefficients o, [3,
andy. Of course, they cannot be estimated in general, except by actually fitting a smooth
curve to the data. We can, however, compute the coefficients for a pure sinusoid of
(semi-) amplitude A4 and frequency Vv (period P = 1/v). Without loss of generality, we
may take the signal as

f(t) = 4 cos(2mvi), (19)
from which it is straightforward to compute the limits

la| £ 2nA4v, (20)

Bl <2 m2A4v?, (21)

Iyl < S04V, (22)

To be conservative in error estimation, we shall adopt rwice these values as upper limit
estimates for absolute values of the coefficients, for a variable star of period P = 1/v.
Therefore we shall use the limits

la| < 4ndv, (23)
IB| < 4n2A4v?, (24)
lyl < 24V’ (25)

This leads to the following error limits:

for ¢, = 0 (bin midpoint):

E, <4ndvGT) = 24(nvT), (26)
E, <4m?AVv*( Ty = A(nvT)?, o (27)
E, < 3wAVETY =5 A(nvT). (28)
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For #, = average time:

E =0, (29)
E, < 4mAV*LTY = A(nvT), (30)
E, < 2mAVATY /10 = A(nvT) /30. (31)

The first thing to notice is that the errors are quite different in the two cases. The
second-order error is the same, but the third-order error is ten times smaller when we take
the time coordinate as the average time rather than the bin midpoint. Most important, if
we take the bin midpoint as our reduced time, the first-order error can be sizeable, but
by taking the average time we reduce it to zero. I therefore draw the following general
rule:

The time coordinate of the averaged datum should a/ways be chosen as
the average time, never as the bin midpoint.

Taking this advice, our errors are given by (29) (which is conveniently zero), (30),
and (31). Unless TvI > 30 (which we needn’t really worry about), the second-order
error is larger than the third-order. Let the tolerance ET be the maximum tolerable error
due to the biasing introduced by the averaging procedure. Then we require that

E2 < ET . (32)
This amounts to
A(rvT) < E,., (33)
or simply
1 [Ep
r< — - (34)
5. Example

Surely an example will illuminate the procedure. Consider the much-analyzed
variable star o Ceti (Mira). It has a period of about 330 days (Kholopov ez al. 1985) and
(semi-)amplitude of 3 magnitudes. Because there are so many data for Mira, it is usual
to analyze not the raw data but 10-day averages (1'= 10). Furthermore, amaximum error
level of 0.05 magnitude in the reduced values is acceptable for most analyses.

Straightforward application of (34) indicates that we can reduce the data by
averages, as long as the bin size 7" < 13.6 days. For 7= 10, from equations (26)—(31)
we have the following errors due to averaging: for #, = 0 (bin midpoint):

E, £24nvT = 0.57 magnitude, (35)

E, < A(nvT) = 0.027 magnitude, (36)

E, <A(nvT)*/3 = 0.00086 magnitude. (37)
For f, = average time:

E =0, (38)

E, < A(nvT)* = 0.027 magnitude, (39)

E, < A(nvT)/30 = 0.000086 magnitude. (40)

Two points become clear. First, the 3rd-order error is so much smaller than the 1st-
and 2nd-order errors that we needn’t worry about it. Clearly these errors are within the
acceptable 0.05 magnitude range for Mira. Therefore, using 10-day averages is an
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acceptable procedure for Mira. Second, the 1st-order error, which is'always Zero f(?r
t,= <t>, can be huge when we take the reduced time as the bin midpoint (¢,=0). This
validates our requirement that the time coordinate of the averaged datum should be the
average time.

6. Conclusion

Averaging is an excellent way to reduce the sheer size of a large data set, with very
little loss of information. Yet we must be aware of two things: first, we must always
record the average time, as well as the average magnitude; and second, if th‘e time span
over which we average is too large, then a bias is introduced by the averaging process
itself.
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