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Abstract  Visual observations made by experienced observers are adjusted for individual observer bias. We examine the time 
series using signal processing methods to identify periodicities and test for the significance of the results finding a reliable periods in 
S Per, and to a limited extent in RS, SU, BU, and KK Per. Recommendations for future visual and electronic observation are made.

1. Introduction

	 We look at seven semiregular and irregular variables in 
Perseus. All but S Per are narrow range variables. The stars 
studied are shown in Table 1 together with previously quoted 
periodicities and references to the source.
	 SRc variables are massive, young, Population I stars with a 
magnitude range of under 5 and irregular periodicity typically 
in the 250–1000 day range (Percy 2011). The best known 
such stars are alpha Orionis (Betelgeuse) and mu Cephei (“the 
garnet star”). Lc variables are also red supergiant stars but with 
irregular periods. The variables apart from S Per studied here 
have a narrow range of variation (less than 2 magnitudes) and as 
such pose a severe test for visual observers because of this, the 
individual’s eyes’ color sensitivity, the Purkinje effect (Purkinje 
1825; Sigismondi 2011; AAVSO (2013) and references therein), 
and other observational factors such as local light pollution. We 
anticipate the “extrinsic” noise (related to the observational 
process) as opposed to the “intrinsic” noise (related to random 
events within the star or environment—if any) to be large, and 
attempt to reduce this as much as possible prior to analysis. For 
example, even experienced observers—defined as those with 
over 100 observations of the star—may differ by as much as a 
magnitude when observing the same star at roughly the same 
time. In this paper we restrict our attention to observations 
made by experienced observers and analyze these for consistent 
“bias,” adjusting the data before further analysis. Adjustment 

of observer data is described in detail below and is atypical of 
standard procedures which generally reject outliers only.
	 A variety of analytical techniques for period identification 
are used in the literature: discrete Fourier transform (DFT) 
(Kendall 1984; Shumway and Stoffer 2017) with or without 
adjustment for the observational window, for example, using 
the CLEAN (Roberts et al. 1987) or CLEANEST algorithms 
(Foster 1995); autoregressive analysis and in particular the 
simple and efficient implementation by Percy and Sato (2009); 
wavelet analysis—see Foster (1996) or Sundararajan (2015) for 
theory and, for example, Percy and Kastrukoff (2001) for an 
application to pulsating variables, and Sabin and Zijlstra (2006) 
when analyzing instability in long-period variables. A general 
review of these techniques is given by Templeton (2004). The 
difficulties of using standard Fourier methods and obtaining 
reliable results should not be underestimated (see Thomson 
1990). More recently, non-linear techniques have also been used 
by Kollath (1990) and Kollath et al. (1998), and others in the 
context of giant variable stars. The methods of Empirical Mode 
Decomposition (Huang et al. 1998; overview by Lambert et al. 
2019) are also geared particularly towards non-linear series.
	 We apply methods from the field of singular spectrum 
analysis (SSA), explained in the context of astronomical data 
analysis by Chaplin (2018) and references therein, and derive 
the underlying signal (removing noise and trends). The aim here 
is to identify underlying patterns of behavior, summarizing them 
by periodicities where appropriate, although the techniques of 

Table 1. Stars analyzed in this study, with previously quoted periodicities and references to the source.

	 Star	 GSC Designation	 Spectral Type	 Class	 Period(s)	 Magnitude Range
			   (Wenger 2000)	 (Kiss et al. 2006)		  (BAAVSS 2019)

	 S Per	 03698-03073	 M4.5-7Iae C	 SRc	 813 ± 60 (Kiss et al. 2006)	 7.9–12.8
					     822 (Samus et al. 2017)
					     745, 797, 952, 2857 (Chipps et al. 2004)
	 RS Per	 03694-01293	 M3.5IabFe-1 C	 SRc	 244.5 (BAAVSS 2019)	 7.8–9.0
					     4200 ± 1500 (Kiss et al. 2006)
	 SU Per	 03694-01652	 M3-M4Iab C	 SRc	 533 (BAAVSSS 2019)	 7.2–8.7
					     430 ± 70 and 3050 ± 1200 (Kiss et al. 2006)
					     500 (Stothers and Leung 1971)
	 AD Per	 03694-01613	 M3Iab C	 SRc	 No discernable peak, 	 7.7–8.4
					     rise to lowest frequencies (Kiss et al. 2006)
					     362.5 (Samus et al. 2017)
	 BU Per	 03694-01247	 M4Ib C	 SRc	 381 ± 30 and 3600 ± 1000 (Kiss et al. 2006)	 9.0–10.0
					     367 (Samus et al. 2017)
	 KK Per	 03693-01951	 M2Iab-Ib B	 Lc	 No significant frequency (Kiss et al. 2006)	 7.5–8.0
	 PR Per	 03694-00152	 M1-Iab-Ib B	 Lc	 No significant frequency (Kiss et al. 2006)	 7.7–8.2
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SSA do not relate any such periodicities to harmonic patterns 
of behavior. We then proceed to test whether these periodicities 
are likely to have arisen by chance from noisy data (in which 
case we reject such periodicity as not intrinsic to the star) or 
not (in which case we accept it as an intrinsic periodicity).

2. Data, observer bias, and adjustments

	 Data are taken from the BAA (2019) and the AAVSO (2010) 
databases, and from the VSOLJ (2018) database prior to 2000. 
The list of experienced observers for which a bias adjustment 
is made is given in Appendix A.
	 For each star other than S Per we proceed as follows. 
The mean magnitude of visual observations is calculated for 
each experienced observer separately and for all experienced 
observers for that star. The individual mean less the overall 
mean is called the observer bias and is deducted from each 
observation made by that observer to get the adjusted magnitude. 
This process generally leads to a substantial reduction in the 
overall variance. Results are shown for each star in Table 2 
(but we intentionally do not wish to state the bias for each 
observer since this might lead to a change in the observer’s 
methods—consistency is preferred to accuracy). Table 2 also 
gives the timespan of data but in all cases there were a number 
of isolated or widely separated observations at the beginning 
of the time series which were ignored. It should be noted that 
the stars for which the bias adjustment was made are all narrow 
range variables, so preferential observing (for example, when 
the variable is bright) should not be a significant source of bias. 
On the other hand, preferential observing is a factor for S Per 
so a bias adjustment is not made.
	 One would not expect bias for a given observer to be 
constant across different stars because different reference stars 
may be used and the group of observers being compared against 
is different. Nevertheless it was noted that observers’ magnitude 
estimates tended to be consistently high or consistently low 
although the amount differed from star to star.
	 For S Per, which has a much greater range of variation, we take 
the data from experienced observers without further adjustment.

3. Analytical methods

3.1. Singular Spectrum Analysis (SSA)
	 SSA is used to extract a series from observations and 
is a method used widely in meteorology, medical science, 
economics, the sciences and industry, and appears to be 

becoming the method of choice for time series data analysis.  
In this section we very briefly outline the methods, and introduce 
the terminology of, singular spectrum analysis (SSA), explained 
more fully in the paper by Chaplin 2018, books by Golyandina 
and Zhigljavsky 2013, Golyandina et al. 2001, and Huffaker 
et al. 2017.
	 From an autocorrelation matrix calculated from the 
time series of magnitude observations the eigenvectors and 
eigenvalues are calculated. These eigenvectors are sorted in 
order from the strongest to the weakest according to the relative 
magnitudes of the associated eigenvalues. The related time 
series are then compared with each other to find correlations 
between them and to determine if the general patterns of 
behavior are similar. The original time series is “projected” 
along each of these eigenvectors to derive an EV-time series 
(which we subsequently refer to as the EV). We then group 
the series together into “trends” (long-term slow patterns), 
“cyclical” (possibly several different groups of series with 
different periods), and noise.
	 It should be noted that observations are required at equally 
spaced intervals in order to perform the above analysis—so we 
have to put data into equal time intervals (buckets), averaging 
values within the bucket. In the stars covered here data have 
been put into 20-day buckets. Also, reconstructed signals, 
although they may look periodic, do not necessarily have a 
constant period nor do they have a constant amplitude, and are 
not derived in any way from harmonic series—the EV time 
series are merely complicated averages of the original data. 
“Periods” indicated below represent an approximation to the 
actual behavior.
	 In this paper we use the r (2018a) statistical programming 
language and CRAN (2018b) libraries and in particular the 
function “ssa” in the r library “Rssa,” and use the code as 
explained in detail in section 3.7 and Appendix B.

3.2. Significance tests of discovered signals
	 A white noise (uncorrelated random noise) is generally 
regarded as an insufficient test for the presence of signals in 
data, and Monte Carlo methods (MCSSA) have been devised 
to test significance (for example, Allan and Smith 1996; Ghil et 
al. 2002). We use the r implementation of MCSSA developed 
by Gudmundsson (2017) and in particular the functions 
decompSSA and MCSSA. Code is given in Appendix B5.
	 We also use a somewhat different approach inspired by 
analysis of variance methods and also by the following intuitive 
idea. If we see a signal in a period of data, then if the signal 
is a permanent feature of the underlying process we expect it 
to continue, but if it is an artefact arising from noisy data we 
expect it to cease to be present in the future.
	 In order to perform significance analysis we compare two 
different time intervals of the same series (first and second 
halves, H1 and H2), looking for common signals, and we need 
to do this (for reasons which will become apparent below) in an 
automated way. Any series typically contains trends—long term 
changes—which may be quite different in two sub-intervals of 
the series, together with potential signals and noise. The impact 
of this can be that a periodic signal manifests itself as one set 
of eigenvectors in one subset and a different set in another.  

Table 2. Timespan and variance reduction through observer bias removal.

	 Star	 Start	 End	 Length	 Variance
		  (2440000+)	 (2440000+)	 (years)	 Reduction

	 S	 –21576	 18115	 108.7	 n/a
	 RS	 2744	 18096	 42.0	 43.5%
	 SU	 –5347	 18115	 64.2	 49.0%
	 AD	 1978	 18115	 44.2	 65.1%
	 BU	 1636	 18082	 45.0	 40.8%
	 KK	 3112	 18115	 41.0	 36.3%
	 PR	 3112	 18115	 41.1	 54.4%
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We therefore begin by finding trend components (defined as 
having too long a period or no period), taking the first signal which is 
not a trend and whose period is not too short as defining a potential 
signal, and look for remaining signals whose period matches 
the first to within a defined amount (the “acceptance criterion”). 
A potential signal is required to have two or more component 
signals. Code “XYZgetSignals_udf” performs this analysis.
	 First, an analysis of H1 in the observational data is made 
to determine the EV groupings that correspond to a signal. We 
then do the same for H2. If the period in H1 is P1 and the period 
in H2 is ˆ and if

A > abs((P1 – P2) × 400 / (P1 + P2))        (1)

where A is the acceptance criterion, we accept the two periods 
as belonging to a signal. If we find no correspondence between 
signals in H1 and H2 then we conclude there is no consistent 
period in the data. Secondly, (assuming we have found a 
potential signal) we then model the original entire series (i. e. 
before trend removal) as a “red” noise (AR(1)) process (see 
section 3.4 below). Code “XYZ actual data tests.R” performs 
this analysis.
	 The AR(1) model is then used to generate simulated data 
(“surrogates”) over the same time period as the actual data 
which are then analyzed as above as if they were the real 
data. In cases where a signal is found in both H1 and H2 of 
the simulated series with a difference less than the acceptance 
criterion, it is then counted as a (simulated) signal. Note that the 
simulated signal is not required to be of the same frequency as 
that identified in the actual data. The process is then repeated 
over 1,000 simulations and the proportion generating simulated 
real signals for the wide and the narrow acceptance criterion 
is calculated (together with an estimate of the accuracy of this 
figure). This then gives an indication of the confidence that the 
real signal did not arise by chance. Code “XYZ significance 
tests.R” performs this analysis.
	 Finally it is important to test variation in the parameters used 
to perform the analysis, in particular by changing the bucketing 
length, the start date by one, two, or more days (which changes 
the bucket contents), and the SSA window length. We test 
using bucket sizes such as 17, 20, 23, 30, 34, 40, and 46 days 
(depending on the length of data available and the suspected 
period—aiming to keep within about one tenth of the period) 
and require that the signal is found in all the decompositions. 
We then reduce the acceptance period subject to the signal 
continuing to be discovered.
	 The process is described more fully in the case of SU Per, 
which is presented first in section 4 below.

3.3. Fourier analysis
	 Fourier analysis is a traditional method for analyzing 
time-series where there is underlying periodicity and where 
the underlying series is stationary. For general references 
on traditional time series analysis including Fourier and 
autoregressive techniques, see Kendall (1984) and Shumway 
and Stoffer (2017; the latter includes r examples and code).
	 In this paper we use the “spectrum” function in the r stats 
library to perform the Fourier analysis and smoothing.

	 Error bars on the spectral power can be calculated from 
surrogate data. However, a plot of the spectrum together with 
the percentiles of the surrogate distribution can be misleading 
and can overstate the significance of peaks—underlying AR(1) 
noise can exaggerate the height of peaks in the spectrum (Allen 
and Smith 1996). Code in Appendix B4 plots the spectrum and 
surrogate percentiles.

3.4. Autoregressive AR(1) model
	 Random noise is generated from a zero mean “red” noise 
(AR(1)) process according to the following formula:

xt = alpha × xt–1 + sigma × epsilont          (2)

where alpha and sigma are constants and epsilon is generated 
from an independent random normal (zero mean, unit variance) 
process.
	 The parameters of the zero mean AR model are chosen 
by fitting such a model to the actual data series using the “ar” 
function in the r stats library.

3.5. Wavelet analysis
	 Where periodicity is known not to be strict or the time series 
non-stationary, Fourier methods are theoretically incorrect—
although they may be a reasonable approximation. Instead 
a technique known as wavelet analysis (or more simply a 
moving window on the data as in Howarth and Greaves 2001) 
is often used. Here we use code based on the wavelet analysis 
code from the AAVSO (2017). For comparison with the SSA 
results we analyze the data using two window sizes determined 
by the “decay” factor—a factor of 0.0001 cycles per day (the 
“slow” window, roughly corresponding to a slow 10,000-day 
window) identifying periodicities which change slowly, and 
a factor of 0.003 (a “fast” 333-day window) identifying more 
rapid changes. In such analysis we identify the strongest period, 
then the next strongest, etc. It is the case that generally the 
second strongest period is virtually the same as the first, so 
when looking for a different period we require that the period 
is at least 20% different from its predecessor. In each case only 
periods significant at a certain level on an F-test (dependent on 
the star) are shown.

3.6. Missing data
	 Three methods for filling missing data were used. The first 
was simple linear interpolation between the last known data 
value and the immediately following known data value. The 
second followed the method of Kondrashov and Ghil (2006) 
by filling missing values from the first eigenseries, recentering 
and refitting until convergence of the eigenvalue was achieved, 
then potentially going on to the next eigenseries. A final method 
was to randomize the linearly interpolated values, the impact 
of which is to slightly lower the value of the autoregressive 
parameter in the fitted AR model.

3.7. Code
	 r code intended for the Rstudio environment for the analysis 
described in sections 3.2 and 3.3 is provided in Appendix 
B. Two main codes are used—one to analyze the real data 
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(“first part” above) and another, if needed, to simulate and 
analyze the simulated data (“second part” above). Each part uses 
(directly or indirectly) some of the following helper functions 
(ending in _udf—user defined function) given in Appendix B1.
	 XYZspectrum_udf performs a spectral analysis using ar 
smoothing or no smoothing, producing a chart if required and 
returning a list of the periods discovered in declining order of 
strength.
	 XYZgetSignals_udf code performs 1d-ssa on the data, 
finding trends and signals meeting certain criteria.
	 XYZbucketData_udf takes the observational data and 
times of observation and collects values into the specified 
length of bucket, taking the average of all values in the bucket. 
Where gaps in the data occur linearly interpolated values are 
calculated, returning the bucketed data, a flag indicating whether 
in interpolated value is used, and other summary data.
	 Appendix B2 contains the “first part” code and loads the 
above functions and the data. The user sets various parameters 
and the code buckets data and performs a 1d-ssa analysis of the 
entire series and the first and second half separately, producing 
results for inspection. Additionally, the code fits an AR(1) model 
producing parameters for simulation use.
	 Appendix B3 contains the “second part” code and includes 
a function matchTest2 to decide whether two signals are 
close (the user inputs the diffPeriodpercent figure, and other 
parameters, into the code where indicated), loads other helper 
functions, and simulates 1000 data series using user input AR(1) 
parameters, performing the analysis described in section 3.2 and 
outputting the proportion of simulations producing signals of 
the same period in each half of the data.
	 Appendix B4 contains code to plot the Fourier spectrum 
of the signal derived from the entire data series, together with 
upper and lower 2 and 10 percentiles calculated from the 
surrogate data and signals.
	 Appendix B5 contains the code to perform MCSSA on the 
actual data, producing a chart with error bars and identifying 
outlying frequencies.

4. The stars

4.1. SU Per
	 SU Per is covered in more detail than the following stars 
hence is presented first.
	 Prior to September 1974 data were sparse—even after 
bucketing into 20-day buckets more than half the buckets were 
empty and with long gaps prior to 1974. Attempts to fill the data 
using linear interpolation or the Khondrashov and Ghil method 
failed to give a satisfactory data series in this earlier period. 
Post-1974, 6,550 observations were bucketed into 803 20-day 
buckets. Less than 8% of the buckets were empty, with no 
long empty runs, and tests using linear interpolation versus the 
Khondrashev and Ghil method showed no material difference in 
the resulting signals; the following results are based on the linear 
interpolation gap filling method. Bucketing tests were run using 
17, 20, 23, 30, 34, 40, and 46 days together with shifts in the 
start date by 1 or 2 days, and showed a consistent set of results 
with an acceptance criterion of 7% across all the following 
analysis. We describe the results in detail for the 20-day buckets.

	 An AR(1) model was fitted to the data (after removing 
the mean) and—after randomizing the linearly interpolated 
values, which reduces the alpha—showed an alpha of 0.71 
and sigma of 0.145. If we assume bias adjusted observations 
have a standard deviation of 0.2 magnitude then the bucketed 
data (approximately 8 observations per bucket) should have 
a residual standard deviation of about 0.1. The AR model is 
therefore not inconsistent with observational error being by far 
the largest part of the noise in the data.
	 The following discussion and figures are based on a window 
length of 400 for the entire series. Tests with a window length 
of 200 show similar results but going much shorter than that 
starts to produce inconsistent results. Figure 1a shows the EVs 
and Figure 1b the correlation analysis for the entire series, with 
signals 5 and 6 meeting the criteria and showing a period of 
475 days with the spectrum illustrated in Figure 1c. The data, 
trend, and signal are shown in Figure 1f.
	 The EVs for the first half are shown in Figure 1d, with 
signals 3 and 4 meeting the criteria and having a period of 464 
days. Signals 5 and 6 are approximately the second harmonic.
	 EVs for the second half are shown in Figure 1e, with signals 
6 and 7 meeting the criteria and giving a period of 475 days. 
EVs 9 and 10 are also approximately the second harmonic.
	 The AR model was then used to produce 1000 simulated 
sets of observational magnitudes, each of which was analyzed 
as described in section 3.2. If the period of the identified signal 
in the first half was within 7% of the period from the second half 
then this was counted as a “hit.” It should be noted that there 
was no requirement that the spurious signal periods matched 
the signal period in the actual data—simply that there are 
closely similar signals in both intervals. Signals corresponding 
to periods of 1,000 days (50 buckets) or longer, or 100 days 
(5 buckets) or shorter were ignored in this test. (Very few 
spurious signals had periods outside this range and many signals 
had no identified period.)
	 Simulation results showed 3.7% (with a standard deviation 
(sd) of 2.0%) of simulations led to spurious signals of 
approximately the same frequency in both halves of the data.
	 As an independent test we use the Monte Carla SSA 
methods in the MCSSA algorithm from the “simsalabim” library 
to produce Figure 1g. Note that periods are 40 days/frequency. 
The figure identifies (as well as early trends) the signals at 475 
days lying just below the 95% confidence level together with 
significant signals around the second harmonic.
	 We conclude that SU Per exhibits a periodicity of 475 ± 33 
days with approximately 95% confidence.

4.1.1. Fourier analysis
	 We use the simulations generated above, together with the 
reconstructed signals and their spectra, to generate 10- and 
2-percentile power levels. These are plotted in Figure 1h along 
with the (unsmoothed) spectrum of the signal in the actual 
data. Note the following points. The autoregressive process 
generates the typical “1/f” rise in power at lower frequencies 
widely seen in Fourier spectra of magnitude time series. Also, 
the figure misleadingly suggests the signal is significant at the 
98% level—the noise process exaggerates the power in the 
actual signal, thereby overestimating its significance.
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Figure 1a. SU Per entire series EVs (amplitude as a function of time).

Figure 1b. SU Per entire series, correlation matrix.

Figure 1c. SU Per spectrum derived from signals 5 and 6 in the entire series.

Figure1d. SU Per first half EVs (amplitude as a function of time).

Figure 1e. SU Per second half EVs (amplitude as a function of time).

Figure 1f. SU Per entire data series with recovered trend components (EVs 1 
to 4) and signal.
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Figure 1g. SU Per significance test of EV signals with 95% error bars.

Figure 1h. Fourier spectrum of data signal together with simulation based 10 
and 2 percentile envelopes.

4.1.2. Wavelet analysis
	 The slow wavelet identifies a 3,225-day period and 
many periods longer than 25% of the time series with 99% 
confidence—we reject longer periods as trends in our SSA 
analysis—together with a period at 476 days significant at the 
97.5% level and briefly a period of approximately four times 
this. The fast wavelet also identifies the very long waves and 
identifies a period rising from about 1,600 days to 1,900 days.
	 We note however that simulated data regularly also show 
signals persisting over large fractions of the data span but, 
while these are significant in the context of that specific series, 
in the context of a series which may be generated by a random 
process, wavelet analysis carries little meaning and is therefore 
not covered further for the following stars.

4.2. S Per
	 S Per is analyzed in some detail in Chaplin (2018). We 
simply summarize the data and state the simulation results here.
	 The data are well populated from January 1920. From 
25,860 observations 1,789 20-day buckets were constructed 
with less than 2% being empty. A fitted AR(1) model gave an 
alpha of 0.96 and sigma of 0.20, the higher sigma possibly 
arising because of unadjusted bias in the observations and the 
high alpha because of the large amplitude of variation relative 
to the noise.

	 In simulations the high alpha tends to generate very few 
signals with a period as short as that analyzed for S Per, and 
simulations resulted in only 0.1% generating signals within 5% 
of each other, hence we accept that S Per has a period of 815 ±  
40 days with over 99% confidence.
	 Using the MCSSA significance testing methods produces 
the results shown in Figure 2. The 815-day signal lies well 
outside the error bars, with neighboring and many harmonics 
also outside the error bars consistent with amplitude and 
frequency modulation of the signal.

4.3. RS Per
	 Prior to November 1972 data were sparse. Post-1972 4,820 
observations were bucketed into 838 20-day buckets. Less than 
9% of the buckets were empty, with no long empty runs. A fitted 
AR(1) model gave an alpha of 0.78 and sigma of 0.165.
	 SSA consistently revealed periods in the 445–495 day range 
with a 5% acceptance criterion and simulations resulted in 4.6% 
generating signals.
	 Using the MCSSA significance testing methods produces the 
results shown in Figure 3. The signal lies outside the error bars, 
with neighboring and some harmonics also outside the error bars.
	 We conclude that S Per has a period of 475 ± 25 days with 
95% confidence.

4.4. AD Per
	 Prior to September 1974 data were sparse. Post-1974 
3,945 observations were bucketed into 805 20-day buckets. 

Figure 2. S Per significance test of EV signals with 99% error bars.

Figure 3. RS Per significance test of EV signals with 95% error bars.
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together with a second harmonic and an intermediate period 
depicted in Figure 4.
	 Because of the instability of the signal detected with 
changing bucketing we conclude AD Per has no clear intrinsic 
period.

4.5. BU Per
	 Prior to December 1975 data were sparse. Post-1975 
3,562 observations were bucketed into 782 20-day buckets. 
Approximately 7% of the buckets were empty, with no long 
empty runs. A fitted AR(1) model gave an alpha of 0.56 and 
sigma of 0.13.
	 SSA gave periods in the range 300–360 days although there 
were exceptions with a 17-day bucketing and in one case the 
second harmonic gained preference. Simulations resulted in 
14% of signals lying within a 15% acceptance criterion. MCSSA 
significance testing produces the results shown in Figure 5. The 
signal lies just outside the error bars with neighboring and some 
harmonics also outside the error bars.
	 We conclude BU Per has a period of 330 ± 50 days with 
80% confidence.

4.6. KK Per
	 Prior to July 1976 data were sparse. Post-1976 3,391 
observations were bucketed into 771 20-day buckets. Less 
than 7% of the buckets were empty, with no long empty runs. 
A fitted AR(1) model gave an alpha of 0.57 and sigma of 0.13 
(virtually the same as BU Per).
	 SSA with 17- to 35-day buckets consistently gave 
well-defined periods in the range 330–360 days using a 7% 
acceptance criterion, with the entire series showing 348 days, 
and simulations resulted in 3% false signals. However, selection 
of EVs to form the signal was sensitive to whether or not linearly 
interpolated values were randomized. MCSSA significance 
testing produces the results shown in Figure 6. The signal lies 
just on the error bar with neighboring and some harmonics 
outside the error bars.
	 We tentatively conclude KK Per has a period of 345 ± 25 
days with approximately 90% confidence.

4.7. PR Per
	 Prior to August 1982 data were sparse. Post-1982 2,826 
observations were bucketed into 659 20-day buckets. Less than 
9% of the buckets were empty, with no long empty runs. A fitted 
AR(1) model gave an alpha of 0.59 and sigma of 0.11.
	 SSA with 17- to 35-day gave no identified period in many 
cases and when signals were identified they tended to be 460 
and 300 days. 
	 We conclude PR Per has no clear period.

5. Conclusions and observer recommendations

	 SSA provides a means of exploring the signals within the 
data and separating trends and noise from cyclical patterns, 
but needs separate analysis to gain confidence that these 
signals are meaningful and not randomly generated by noise 
in the observations. It is clear from the above analysis that 
narrow range late spectral type stars are problematic for visual 

Figure 4.AD Per significance test of EV signals with 90% error bars.

Figure 5. BU Per significance test of 20 day bucketing and signal from EVs 4 
and 5 with 80% error bars.

Figure 6. KK Per significance test of EV 5, 6, 9, 10 and 30 day bucketing with 
90% error bars.

Approximately 8% were empty, with no long empty runs. A 
fitted AR(1) model gave an alpha of 0.61 and sigma of 0.13.
	 Testing with 17- to 35-day bucketing with a 15% acceptance 
criterion nevertheless revealed periods between 320 and 450 
days, with many spectral peaks being very broadly defined. The 
entire series gave a signal period of 360 days. Simulation with a 
15% acceptance criterion gave 13% generating signals. On the 
other hand, MCSSA using 20-day bucketing and signals 5–8 
detected significance at the 90% level at periods of 350 days 
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observation. Nevertheless a long run of data can help overcome 
the noise, but a better and available solution is to reduce 
the noise. We strongly recommend the use of CCD/DSLR 
equipment by amateurs as outlined further below to overcome 
the problem of the substantial component of extrinsic noise in 
future data.
	 We reject the use of wavelet analysis in the context of noisy 
data such as these.
	 Results of the analysis are summarized in Table 3.
	 S Per makes it clear that a long history and large range of 
magnitude variation lead to a period determination with high 
confidence. For the other stars, where a period is determined, 
the confidence is in the 80-95% region.
	 It is unfortunate that observations of SRc variables have 
reduced in recent years. These stars are not well understood 
and a rich long database of observations is essential for future 
study. Visual observation is helpful in order to relate visual and 
future electronic observations and in any event is likely to be 
more plentiful than electronic observations. Visual observers 
are encouraged to build up a series of over 100 observations, 
making observations no more frequently than once a week.
	 The narrow range of variability and the strong color 
make these objects ideal for CCD observation with a V filter, 
or DSLR observation. A good consumer digital camera and 
200mm lens on an equatorial mount is sufficient to produce 
high quality data for these objects. Variable sky conditions 
can mean any single observation may be accurate to only 0.1 
magnitude (even though the software stated reduction accuracy 
is much better), so electronic observations should ideally be a 
set of 30 to 100 observations to reduce the error in the mean to 
0.01 magnitude or less. It should be noted that with short focal 
length instruments (500mm or less) six or more SRc variables in 
Perseus will fit on a 35mm frame sensor, making data collection 
efficient. A long history of accurate magnitudes derived from 
electronic data is essential to apply some of the analysis in this 
paper with a high level of confidence and is essential for a better 
understanding of pulsating variables.
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Appendix A

List of the observers for which a bias adjustment is made, and 
the number of visual observation for the stars analyzed.

	 D. Stott	 1153
	 G. Poyner	 238
	 G. Ramsay	 104
	 C. Hadhazi	 1498
	 S. Hoeydalsvik	 224
	 I. A. Middleton	 1391
	 J. D. Shanklin	 100
	 T. Kato	 750
	 J. Krticka	 221
	 A. Kosa-Kiss	 1139
	 R. S. Kolman	 352
	 L. K. Brundle	 2239
	 W. Lowder	 112
	 M. J. Nicholson	 313
	 O. J. Knox	 337
	 E. Oravec	 588
	 P. J. Wheeler	 467
	 S. Papp	 202
	 R. C. Dryden	 629
	 S. W. Albrighton	 4211
	 S. Sharpe	 1048
	 A. Sajtz	 746
	 T. Markham	 1781
	 P. Vedrenne	 2926
	 W. J. Worraker	 203
	 Y. Watanabe	 503

Appendix B: r code

	 Notes:
	 1. We recommend the use of RStudio (2018) which provides 
a simple and highly efficient way of handling r code and results 
including the production of graphics.
	 2. The user needs to set the path according to where the r 
system has been installed—see the code comments below—and 
also define certain input parameters.
	 3. Comments are in italics, code in bold, headings in larger 
type italics.

B.1. Helper functions
# function to get periods corresponding to peak intensities
XYZspectrum_udf <-
function(x, drawPlot, graphText, smoothing) {
	 if (drawPlot) spec.out←spectrum(x, main=graphText,
		  method=smoothing)
	 else spec.out←spectrum(x, plot=FALSE, method=smoothing)
	 #Power Spectrum Plots
	 power<-spec.out$spec # vertical axis values in spectral plot
	 frequency<-spec.out$freq # all the frequencies on the x-axis
	 cycle<-1/frequency # corresponding wavelengths
	 #Sort cycles in order of magnitude of power spikes
	 hold<-matrix(0,(length(power)-2),1)
	 for(i in 1:(length(power)-2)){
		  max1<-if(power[i+1]>power[i]&&power[i+1]>power[i+2])1 else (0)
		    hold[i,]<-max1
	 }
	 max<-which(hold==1)+1
	 if (length(max) == 0) {
		  max = 1
	 } else {
		  if (power[1] == Inf) {
			   max = 1
	 } else {
		  if(power[1]>power[max]) max = 1
		  }
	 }
	 power.max<-power[max]
	 cycle.max<-cycle[max]
	 o←order(power.max, decreasing=TRUE)
	 cycle.max.o<-cycle.max[o]
	 peakFrequencies<-1/cycle.max[o]
	 results<-list(cycle.max.o)
	 return(results)
}

# function to identify trends and primary periodic signal
XYZgetSignals_udf <-
function(y, s, longestPeriod, shortestPeriod, bucketSize,
periodDiffpercent,outputVecCount){
	 # find trends
	 trendSignals = seq(0, 0, length.out=outputVecCount)
	 EVPeaks = seq(0, 0, length.out=outputVecCount)
	 for (i in 1:outputVecCount){
		  r <- reconstruct(s, groups = list(EV = c(i:i)))
		  recon = unlist(r[1])
		  spec.out = XYZspectrum_udf(recon, drawPlot=FALSE, “”,
	  		  smoothing=”ar”)
		  specPeaks = unlist(spec.out[1])*bucketSize
		  if (length(specPeaks) == 0) specPeaks = 0
		  EVPeaks[i] = specPeaks[1]
		  if (EVPeaks[i]>longestPeriod) trendSignals[i] = i
	 }
	 trendSignals = trendSignals[trendSignals != 0]
	 #determine first periodic signal neither too long nor too short a period
	 periodSignals = seq(0, 0, length.out=outputVecCount)
	 pStart = 0
	 for (i in 1:(outputVecCount-1)) {
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		  if (pStart == 0) {
			   if (EVPeaks[i] >= shortestPeriod & EVPeaks[i] <= longestPeriod) {
				    itmp = 1
				    periodSignals[itmp] = i
				    pStart = i
			   }
		  }
	 }
#determine subsequent periodic signals matching first
	 if (pStart>0){
		  for (i in (pStart+1):outputVecCount) {
			   if (EVPeaks[i] >= shortestPeriod & EVPeaks[i] <= longestPeriod &
				    abs(EVPeaks[i]-EVPeaks[pStart]) < periodDiffpercent*EVPe	
				      aks[pStart]/100) {
				    itmp = itmp + 1
				    periodSignals[itmp] = i
			   }
		  }
	 }
	 periodSignals = periodSignals[periodSignals != 0]
	 if (length(periodSignals) > 1) { # NB single signal not allowed
		  r2 <- reconstruct(s, groups = list(EV = periodSignals))
		  signal = unlist(r2[1])
		  spec.out2 = XYZspectrum_udf(signal, drawPlot=FALSE, “”, 
			   smoothing=”ar”)
		  signalPeaks = unlist(spec.out2[1])*bucketSize
	 } else signalPeaks = NULL
	 return(list(trendSignals, EVPeaks, periodSignals, signalPeaks))
}

# function to collect irregularly timed data into constant size buckets
XYZbucketData_udf <-
function(bucketSize, data, time, ndata){
	 n = 1
	 bucketSum = data[1] # sum within a bucket
	 count = 1 # number of obs within bucket
	 sumCount = 0 # calculates the average number of data points in non-
	   empty buckets
	 nbucket = 1 # number of buckets
	 Tstart = time[1]
	 maxBuckets = floor((time[ndata] - Tstart) / bucketSize) + 1
	 bucketData = seq(0, 0, length.out=maxBuckets)
	 EMPTYBUCKETFLAG = seq(0, 0, length.out=maxBuckets)
	 while (n < ndata) {
		  if (time[n+1]>=Tstart+nbucket*bucketSize){
			   bucketData[nbucket] = bucketSum / count
			   sumCount = sumCount + count
			   count = 0
			   bucketSum = 0
			   while (time[n+1]>=Tstart+(nbucket+1)*bucketSize) {
				    nbucket = nbucket + 1
				    EMPTYBUCKETFLAG[nbucket] = 1
			   }
			   nbucket = nbucket + 1
			   count = 1
			   n = n + 1
			   bucketSum = data[n]
		  } else {
			   n = n + 1
			   count = count + 1
			   bucketSum = bucketSum + data[n]
		  }
	 } #end while
	 if (count > 0) { # final bucket (incomplete)
		  bucketData[maxBuckets] = bucketSum / count
	 } else emptBucketCount = emptBucketCount + 1
	 totalEmpty = sum(EMPTYBUCKETFLAG)
	 avgNoInNonemptyBuckets = ndata / (maxBuckets - totalEmpty)
	 #now fill empty buckets by by linear interpolation
	 LIbucketData = seq(0, 0, length.out=maxBuckets)
	 iLast = 1
	 LIbucketData[1] = bucketData[1]
	 for (i in 2:maxBuckets){

		  if (EMPTYBUCKETFLAG[i] == 0 & EMPTYBUCKETFLAG[i-1]
			   == 1 ) {
			   LIbucketData[iLast] = bucketData[iLast]
			   LIbucketData[i] = bucketData[i]
			   for (j in iLast+1:i-1) LIbucketData[j] =
				    bucketData[iLast] + (bucketData[i] - bucketData[iLast])*
				      (j-iLast)/(i-iLast)
			   iLast = i
		  }
		  else if (EMPTYBUCKETFLAG[i] == 0) {
			   iLast = i
			   LIbucketData[i] = bucketData[i]
		  }
	 }
	 ntmp = length(LIbucketData)
	 bucketData = LibucketData[-(maxBuckets+1:ntmp)]
	 result = list(bucketData, maxBuckets,totalEmpty,
	  	 avgNoInNonemptyBuckets,
	 EMPTYBUCKETFLAG, ntmp)
	 return(result)
}

B.2. “first part” analysis in section 3.2
rm(list=ls(all=TRUE))
#Load User-Defined Functions
setwd(“C:/Users/Geoff/Documents/R/GBC Defined Functions”)
dump(“XYZgetSignals_udf”, file=”XYZgetSignals_udf.R”)
source(“XYZgetSignals_udf.R”)
dump(“XYZspectrum_udf”, file=”XYZspectrum_udf.R”)
source(“XYZspectrum_udf.R”)
dump(“XYZbucketData_udf”, file=”XYZbucketData_udf.R”)
source(“XYZbucketData_udf.R”)
#load Rssa R library from Install Packages
library(Rssa)
# end user defined functions

# USER INPUT# USER INPUT# USER INPUT# USER INPUT# USER INPUT
longestPeriod = 1000 # maximum acceptable period in days
shortestPeriod = 100 # shortest
periodDiffpercent = 10.0 # % of frequency or supposed period, used as 
acceptance criterion
randomiseLinterp = TRUE
#NB user can set up a loop over the following variables and write output if 
desired
Xfactor = 1 # change to adjust bucket size
dataStart = 1
baseBucketSize = 20
# USER INPUT# USER INPUT# USER INPUT# USER INPUT# USER INPUT

# STEP 1: Read in and select data
fileIn = “SU Per” # data is 3 col CSV file headers JD, mag and adjMag
setwd(paste0(“C:/Users/Geoff/Documents/ASTRO/data analysis/”, fileIn, 
“/raw data”))
#D:/ or your own path here
tsIn←read.csv(“biasAdjusted.csv”) # data is 3 col CSV file headers JD, 
mag and adjMag
plot(tsIn$adjMag,xlim=c(1,length(tsIn$adjMag)), xlab=””, ylab=””, 
type=”l”, col=”black”,
lwd=2, main=”complete series actual data”)
if (dataStart > 1) ts = tsIn[-c(1:dataStart-1),] else ts = tsIn
ndata = nrow(ts)
mag<-ts$adjMag
timeJD = ts$JD

# STEP 2a: bucket data
bucketSize = baseBucketSize * Xfactor
tmp = XYZbucketData_udf(bucketSize,mag,timeJD,ndata)
bucketDates = seq(timeJD[1]+bucketSize/2,timeJD[ndata],by=bucketSize)
maxBuckets = unlist(tmp[2])
emptyBuckets = unlist(tmp[3])
avgFilledBucketCount = unlist(tmp[4])
bucketMag = unlist(tmp[1])
emptyFlag = unlist(tmp[5])
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L = floor(maxBuckets/4)*2
magMean = mean(bucketMag)
bucketMag = bucketMag - magMean
outputVecCount = 10

# STEP 2b:
# calculate mean average change from bucket to bucket and randomise linterp 
values
if (randomiseLinterp) {
	 bucketMagLagged = bucketMag[2:maxBuckets]
	 delta = sum(abs(bucketMag-bucketMagLagged))/(maxBuckets-1)
	 set.seed(0)
	 randomNormal <- rnorm(maxBuckets)
	 bucketMagRand = bucketMag
	 for (i in 2:maxBuckets) {
		  if (emptyFlag[i] == 1) bucketMagRand[i] = bucketMagRand[i] + 	
			   delta*randomNormal[i]
		  }
		  bucketMag = bucketMagRand - mean(bucketMagRand)
	 }

# STEP 3: automated SSA of actual data
x = bucketMag
x1 = x[1:L]
x2 = x[-(1:L)]
for (kk in 1:3) {
	 if (kk == 1) { x = x - mean(x); Lx = L
	 } else if (kk == 2) { x = x1 - mean(x1); Lx = L/2
	 } else if (kk == 3) { x = x2 - mean(x2); Lx = L/2 }
	 s←ssa(x, Lx, kind=”1d-ssa”)
	 plot(s, type=”vectors”, idx=1:outputVecCount, xlim=c(1,Lx), 	
col=”black”, lwd=2)
	 w←wcor(s, groups=c(1:outputVecCount))
	 plot(w, title=”correlation matrix”)
	 results = XYZgetSignals_udf(x, s, longestPeriod, shortestPeriod, 	
		  bucketSize, periodDiffpercent, outputVecCount)
	 actualTrendSignals = results[1]
	 actualEVPeaks = results[2]
	 actualPeriodSignals = results[3]
	 actualSignalPeaks = results[4]
	 count = length(actualPeriodSignals[[1]])
	 signal = reconstruct(s, groups = list(EV = unlist(actualPeriodSignals)))
	 XYZspectrum_udf(unlist(signal[1]), drawPlot=TRUE, “signal 	
		  spectrum”, smoothing=”ar”)
	 }
# STEP 4: fit AR(1) model for later simulation use
autoAR1 = ar(bucketMag, aic=FALSE, order.max=1)
alphaLI = autoAR1$ar
errors = autoAR1$resid
sigmaLI = sqrt(var(errors[2:maxBuckets], y=NULL, na.rm=TRUE))
write(“alphaAR, sigmaAR”, file = “actualDataAnalysis.csv”, ncolumns = 
1, append = TRUE,
sep = “,”)
write(paste(alphaLI, sigmaLI, sep=”,”), file = “actualDataAnalysis.csv”, 
ncolumns = 2,
append = TRUE, sep = “,”)
write(“ “, file = “actualDataAnalysis.csv”, ncolumns = 1, append = TRUE, 
sep = “,”)

B.3. “second part” analysis in section 3.2
rm(list=ls(all=TRUE))
#Load User-Defined Functions
setwd(“C:/Users/Geoff/Documents/R/GBC Defined Functions”)
dump(“XYZgetSignals_udf”, file=”XYZgetSignals_udf.R”)
source(“XYZgetSignals_udf.R”)
dump(“XYZspectrum_udf”, file=”XYZspectrum_udf.R”)
source(“XYZspectrum_udf.R”)

# this helper function tests H1 signal frequency against H2
matchTest2 <- function(peakS1H1, peakS1H2, periodDiffpercent){
	 hit = 0
		  if ((peakS1H1>shortestPeriod) & (peakS1H1<longestPeriod)){
			   if ((peakS1H2>shortestPeriod) & (peakS1H2<longestPeriod)){

				    if (abs(peakS1H1-peakS1H2)<periodDiffpercent*(peakS1H1+	
				      peakS1H2)/200){
				      hit = 1
				    }
			   }
		  }
		  return(hit)
	 }
	 # end user defined functions
	 library(Rssa)

# USER INPUT# USER INPUT# USER INPUT# USER INPUT# USER INPUT
periodDiffpercent = 10.0 # % of frequency or supposed period, used as 
acceptance criterion
longestPeriod = 1000 # maximum acceptable period in days
shortestPeriod = 100 # shortest
bucketSize = 20 # used to calculate spectral peak in days
maxBuckets = 803
alpha = 0.71
sigma = 0.145
# USER INPUT# USER INPUT# USER INPUT# USER INPUT# USER INPUT

# simulate data, and perform analysis looking for a periodic signal
L = floor(maxBuckets/4)*2
LH = L/2
outputVecCount = 10
nsims = 1000
hitSimsCount = 1
set.seed(0)
hits = seq(0, 0, length.out=nsims) # number of hits within periofDiffPercent
for (j in 1:nsims){
	 simulatedSeries <- arima.sim(list(ar=c(alpha,0,0)), sd=sigma, 	
	 n=maxBuckets)
	 y = simulatedSeries[1:L]
	 y = y - mean(y)
	 s<-ssa(y,LH,kind=”1d-ssa”)
	 results = XYZgetSignals_udf(y, s, longestPeriod, shortestPeriod, 	
		  bucketSize, periodDiffpercent, outputVecCount)
	 signalPeaks = unlist(results[4])
	 if (length(signalPeaks) == 0) peakS1H1 = 0 else peakS1H1 = signalPeaks[[1]]
	 y = simulatedSeries[-(1:L)]
	 y = y - mean(y)
	 s<-ssa(y,LH,kind=”1d-ssa”)
	 results = XYZgetSignals_udf(y, s, longestPeriod, shortestPeriod, 
		  bucketSize, periodDiffpercent, outputVecCount)
	 signalPeaks = unlist(results[4])
	 if (length(signalPeaks) == 0) peakS1H2 = 0 else peakS1H2 = 		
		  signalPeaks[[1]]
	 # compare the strongest signal in H1 with first or second strongest in H2
	 hits[j] = matchTest2(peakS1H1, peakS1H2, periodDiffpercent)
}
cat(sum(hits)*100/nsims, sum(hitsHalf)*100/nsims, “\n”)

B.4. Fourier spectrum and percentiles analysis in section 3.3

# plots spectrum of signal in the actual data together with envelopes derived 
from the spectra of
# signals in surrogate series

rm(list=ls(all=TRUE))
#Load User-Defined Functions
setwd(“C:/Users/Geoff/Documents/R/GBC Defined Functions”)
dump(“XYZgetSignals_udf”, file=”XYZgetSignals_udf.R”)
source(“XYZgetSignals_udf.R”)
dump(“XYZspectrum_udf”, file=”XYZspectrum_udf.R”)
source(“XYZspectrum_udf.R”)
dump(“XYZbucketData_udf”, file=”XYZbucketData_udf.R”)
source(“XYZbucketData_udf.R”)
library(Rssa)

# USER INPUT# USER INPUT# USER INPUT# USER INPUT# USER INPUT
periodDiffpercent = 10.0 # % of frequency or supposed period, used as 
acceptance criterion
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longestPeriod = 1000 # maximum acceptable period in days
shortestPeriod = 100 # shortest
bucketSize = 20 # used to calculate spectral peak in days
fileIn = “SU Per”
setwd(paste0(“C:/Users/Geoff/Documents/ASTRO/data analysis/”, fileIn, 
“/raw data”))
alpha = 0.71
sigma = 0.145
# USER INPUT# USER INPUT# USER INPUT# USER INPUT# USER INPUT

# STEP 1: Read in data, bucket, find signal and perform spectral analysis for 
the chart
ts<-read.csv(“biasAdjusted.csv”)
ndata = nrow(ts)
mag<-ts$adjMag
timeJD = ts$JD
tmp = XYZbucketData_udf(bucketSize, mag, timeJD, ndata)
bucketDates = seq(timeJD[1]+bucketSize/2, timeJD[ndata], by=bucketSize)
bucketMag = unlist(tmp[1])
maxBuckets = unlist(tmp[2])
bucketMag = bucketMag - mean(bucketMag)
outputVecCount = 10
L = floor(maxBuckets/4)*2
s←ssa(bucketMag, L, kind=”1d-ssa”)
results = XYZgetSignals_udf(x, s, longestPeriod, shortestPeriod, bucketSize,
periodDiffpercent, outputVecCount)
actualPeriodSignals = results[3]
signal = reconstruct(s, groups = list(EV = unlist(actualPeriodSignals)))
spec.out←spectrum(unlist(signal[1]), plot=FALSE, method=”pgram”)
x<-spec.out$freq # all the frequencies on the x-axis
actual = spec.out$spec
nnn = length(x)

# STEP 2: simulate data, and perform analysis looking for a periodic signal
nsims = 1000
L = floor(maxBuckets/4)*2
outputVecCount = 10
set.seed(0)
power2 = matrix(0, nsims, length(x))
for (j in 1:nsims){
	 y <- arima.sim(list(ar=c(alpha,0,0)), sd=sigma, n=maxBuckets)
	 y = y - mean(y)
	 s<-ssa(y,L,kind=”1d-ssa”)
	 results = XYZgetSignals_udf(y, s, longestPeriod, shortestPeriod, 	
		  bucketSize, periodDiffpercent, outputVecCount)
	 actualPeriodSignals = results[3]
	 signal = reconstruct(s, groups = list(EV = unlist(actualPeriodSignals)))
	 spec.out = spectrum(unlist(signal[1]), plot=FALSE, method=”pgram”)
	 if (j==1) frequency<-spec.out$freq # all the frequencies on the x-axis; 	
		  standard intervals
	 power2[j,] = spec.out$spec
	 }
# find 10% and 2% envelopes
lower10 = c(nnn)
upper10 = c(nnn)
lower2 = c(nnn)
upper2 = c(nnn)
for (ifreq in 1:nnn) {
	 datax = power2[,ifreq]
	 lower10[ifreq] = quantile(datax,0.1)
	 upper10[ifreq] = quantile(datax,0.9)
	 lower2[ifreq] = quantile(datax,0.02)
	 upper2[ifreq] = quantile(datax,0.98)
}

plot(x,actual, log=”y”, xlab=”frequency”, ylab=”power”, type=”l”, 
	 col=”black”, lwd=2, main=paste0(fileIn, “: signal and 10 and 2 
	 percentiles”))
lines(x, y=upper10, col=”black”, lty=3, lwd=1)
lines(x, y=lower10, col=”black”, lty=3, lwd=1)
lines(x, y=upper2, col=”black”, lty=1, lwd=1)
lines(x, y=lower2, col=”black”, lty=1, lwd=1)

B.5. MCSSA code
rm(list=ls(all=TRUE))
#Load User-Defined Functions
setwd(“C:/Users/Geoff/Documents/R/GBC Defined Functions”)
dump(“XYZspectrum_udf”, file=”XYZspectrum_udf.R”)
source(“XYZspectrum_udf.R”)
dump(“XYZbucketData_udf”, file=”XYZbucketData_udf.R”)
source(“XYZbucketData_udf.R”)
library(Rssa)
#install.packages(“simsalabim”, repos=”http://R-Forge.R-project.org”)
library(simsalabim)

# USER INPUT# USER INPUT# USER INPUT# USER INPUT# USER INPUT
longestPeriod = 1000 # maximum acceptable period in days
shortestPeriod = 100 # shortest
periodDiffpercent = 10.0 # % of frequency or supposed period, used as 
acceptance criterion
bucketSize = 20
fileIn = “SU Per”
setwd(paste0(“C:/Users/Geoff/Documents/ASTRO/data analysis/”, fileIn, 
“/raw data”))
# USER INPUT# USER INPUT# USER INPUT# USER INPUT# USER INPUT

# STEP 1: Read in data and bucket
ts<-read.csv(“biasAdjusted.csv”)
ndata = nrow(ts)
mag<-ts$adjMag
timeJD = ts$JD
tmp = XYZbucketData_udf(bucketSize, mag, timeJD, ndata)
bucketDates = seq(timeJD[1]+bucketSize/2, timeJD[ndata], by=bucketSize)
maxBuckets = unlist(tmp[2])
bucketMag = unlist(tmp[1])
L = floor(maxBuckets/4)*2
x = bucketMag - mean(bucketMag)
outputVecCount = 10

# STEP 3: MCSSA analysis
s←decompSSA(x, L, toeplitz = FALSE, getFreq = TRUE)
x.rc1 <- reconSSA(s, x, list(5:6)) # the signal
signalFreq = XYZspectrum_udf(unlist(x.rc1), drawPlot=TRUE, 
“signalspectrum”,
smoothing=”ar”)
x.rc2 <- reconSSA(s, x, list(1:4)) # trend
plot(x,type=”l”)
lines(x.rc1,col=”red”,lwd=2)
points(x.rc2,col=”blue”)
y = MCSSA(s, x, n=1000, conf = 0.9, keepSurr = FALSE, ar.method=”mle”)
plot(y, by = “freq”, normalize = FALSE, asFreq = TRUE,
lam.pch = 1, lam.col = “black”, lam.cex = 1, sig.col = “black”,
sig.pch = 19, sig.cex = 1, conf.col = “darkgray”, log = “xy”,
ann = TRUE, legend = TRUE, axes = TRUE)


