# Multi-color Photometry of the Hot R Coronae Borealis Star and Protoplanetary Nebula V348 Sagittarii 

Arlo U. Landolt<br>Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803; landolt@phys.lsu.edu<br>Visiting astronomer, Kitt Peak National Observatory, National Optical Astronomical Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.

Visiting astronomer, Cerro Tololo Inter-American Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.

Visiting astronomer; this work makes use of observations obtained at the Las Campanas Observatories.

James L. Clem<br>Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803<br>(Current address: Department of Physics, Grove City College, Grove City, PA 16127); jclem@phys.lsu.edu<br>Visiting astronomer, Cerro Tololo Inter-American Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.

Received April 10, 2019; revised May 17, 2019; accepted May 17, 2019


#### Abstract

A long term program of precision photoelectric UBVRI photometry has been combined with AAVSO archival data for the hot, R CrB-type hydrogen deficient star and proto-planetary nebula, V348 Sgr. CCD data also are described. Since V348 Sgr is one of only four hot R CrB stars, it and other group members deserve continued attention by observers.


## 1. Introduction

The star now known as V348 Sgr was discovered to be variable in light by Woods (1926), and later, independently, by Schajn (1929). The discovery name assigned by Woods was HV 3976. She found the star's brightness to vary between 11th and fainter than 16.5 magnitude. Woods' discovery note does not state the kind of emulsion utilized, and hence the type of magnitude. (History describing the Harvard College Observatory (HCO) telescopes, leading to an enhanced understanding of the kinds of magnitudes produced by the HCO patrol telescopes may be found at the Digital Access to a Sky Century @ Harvard (DASCH), dasch.rc.fas.harvard.edu/photometry.php, leadingto dasch.rc.fas.harvard.edu/lightcurve.php. Additional insight is located in Laycock et al. (2010).)

V348 Sgr appears in the DR2 release of the Gaia Catalogue which appears in VizieR in catalogue I/345/gaia2 (Gaia Collab. et al. 2016, 2018). V348 Sgr is source number 4079151545960427264 with coordinates R.A. $=18^{\mathrm{h}} 40^{\mathrm{m}}$ $19.92705^{\text {s }}$, Dec. $=-22^{\circ} 54^{\prime} 29.3880^{\prime \prime}$, J2000. It is a member of a small subset of four hot hydrogen-deficient stars. These four stars, MV Sgr, V348 Sgr, DY Cen, and HV 2671, possess the R CrB-type of light curve, that is, they spend the majority of the time at maximum brightness, with occasional excursions to fainter magnitudes (De Marco et al. 2002, and references therein). They differ from most R CrB stars in that on average their effective temperatures are 10,000 to $15,000 \mathrm{~K}$ hotter. Therefore, these four stars are of special interest, and should continue and remain on observing programs.

V348 Sgr also appears in the literature as AN 21.1929, AAVSO 1834-23, 2MASS J18401992-2254292, and ASAS

J184020-2254.5. V348 Sgr does not appear in the UCAC4 catalogue or in the corresponding APASS data release.

A finding chart for V348 Sgr is given in Figure 1. The chart is based on a digitized version of the Palomar Sky Survey I (POSS I) blue survey (Palomar Observatory 1950-1957). The size of the field as presented in the chart is about ten arc minutes on a side.


Figure 1. Finding Chart for V348 Sgr identified as V, and a nearby faint star UCAC4 336-170138 identified by C. The field of view is approximately 10 arc minutes on a side.

Excellent and definitive summaries of the characteristics of R CrB stars, including the four stars listed above, have appeared in Clayton (1996, 2012). De Marco et al. (2002) thoroughly describe this four-member subset of R CrB stars. They write that these four stars are quite different from each other as evidenced by their spectra. They indicate that the "only common characteristics are their temperatures and light variation." Finally, they found that MV Sgr, V348 Sgr, and DY Cen all exhibit a long-term downward trend in brightness over the time frame under study. Schaefer (2016) has searched archival files and also has discussed the long term behavior of this four-star group of hot R CrB stars. Pollacco et al. (1990) showed that the nebulosity surrounding V348 Sgr was an old planetary nebula of extent some 30 arc seconds. Clayton et al. (2011) discuss the properties of the dust involved with V348 Sgr via use of Spitzer/IRS spectra. The data in this paper are based on precision photometry in standard bandpasses covering years for which such observations are minimal.

## 2. Observations

Photoelectric observations of V348 Sgr were taken by AUL in the interval 1982 September 14 to 2001 October 16 ( $2445226.53 \leq H J D \leq 2452198.57$ ), a range of 6,972 days, or 19.1 years. The data were collected at Cerro Tololo InterAmerican Observatory's (CTIO's) $0.9-\mathrm{m}, 1.0-\mathrm{m}$ (Yale), $1.5-\mathrm{m}$, and 4.0-m telescopes, and at the Kitt Peak National Observatory 1.3-m telescope.

The dates upon which data were taken, and observatories, telescopes, detectors, and filters utilized all are listed in Table 1. These data were tied into $U B V R I$ standard stars as defined in Landolt (1983). All $R$ and $I$ measures herein are on the KronCousins system. The data, using detectors described in Landolt (1983, 1992), were reduced following precepts outlined in Landolt (2007).

CCD data were taken on 22 nights at the Las Campanas Observatory (LCO) telescopes, 16 nights at the Swope $1.0-\mathrm{m}$, and 6 at the DuPont $2.5-\mathrm{m}$. The 1992 October and 1996 August CCD data were obtained at the Swope $1.0-\mathrm{m}$ telescope. The detector was a Texas Instrument (TI\#1) $800 \times 800$ pixel chip whose plate scale was $0.435^{\prime \prime}$ pixel $^{-1}$. The field size was $5.8^{\prime}$ on a side. The data were binned $2 \times 2$. A $2 \times 2$ inch $U B V R I$ filter set borrowed from CTIO meant that the same filter set was used for AUL's CTIO and LCO programs at that time. The composition of the filter set is described in Table 1 in Landolt and Clem (2017). The June 1994 CCD data were obtained at the LCO DuPont $2.5-\mathrm{m}$ telescope, using the same chip and filters as at the Swope telescope.

The CTIO CCD data, calendar years 2008 through 2010, were obtained at the CTIO Yale $1.0-\mathrm{m}$ telescope by JLC, using the Y4KCam CCD. The equipment, data acquisition, and reduction processes were described in Clem and Landolt (2013).

Data were obtained the night of UT 1993 May 11 at the KPNO $0.9-\mathrm{m}$ using the CCDPhot program. This was an IRAF program which used a CCD instead of a photomultiplier as the detector, and apertures defined by software rather than by an aperture wheel. An excellent description of the program and technique was written by Tody and Davis (1992).

The CCDPhot instrumentation included a Tek 2 chip, T5HA, serial number 1115-8-3. For a chip size of $512 \times 512$ with 27 micron pixels, and a scale of 0.77 arc sec per pixel, the field of view was $6.6 \times 6.6 \mathrm{arc} \mathrm{min}$ on a side. A more complete description may be found at https://www.noao.edu/noao/ noaonews/sep95/art37.html. It was a neat instrumental set-up. A figure illustrating the quantum efficiency of T5HA may be found at https://www.noao.edu/noao/noaonews/jun96/node38. html. Data through the $U$ filter did not transform satisfactorily, and are not included herein.

## 3. Discussion

Data for V348 Sgr in the AAVSO International Database (Kafka 2019) begin on JD 2434917.0, 1954 June 23 UT. We have downloaded data in the interval 1996 April 23 to 2017 November $24(2450196.718 \leq 2458082.498)$, an interval of 7885.78 days, or 21.6 years, since this subset of data in the AAVSO database is similar in time extent to ours. Visual observations indicating "fainter than" and those taken through filters other than "Johnson $V$ " then were eliminated from the listing. The remaining AAVSO observations have been displayed in Figure 2 as black circles.

The photoelectric reduction process recovered the magnitudes and color indices of the standard stars that were observed each night. The rms errors calculated from those recovered magnitude and color indices are listed in Table 2. The first and second columns give the UT date of observation and the corresponding Julian Date, respectively. The telescope at which the data were collected is given in the third column, and the filters through which the data were taken are in the fourth column. The last six columns list the rms errors of the recovered standard stars' magnitude and color indices for that night. The last two lines in Table 2 show that the accuracy of the recovered standard star photometry was one percent or less, except for $(U-B)$. When at maximum brightness, V348 Sgr was similar in brightness to the standard stars; when at minimum, it was as much as six magnitudes fainter.

On the night of 2000 May 23 UT, at $08^{\mathrm{h}} 09^{\mathrm{m}} 00^{\mathrm{s}} U T$, HJD 2451687.83958, V348 Sgr was too faint to measure at the CTIO


Figure 2. AAVSO V database magnitudes plus $V$ photoelectric and CCD magnitudes from this paper for V348 Sgr. Black circles indicate AAVSO data, red squares indicate photoelectric data, and green triangles indicate CCD data.

Table 1. Telescopes, detectors, and filters.

| $\begin{gathered} U T \\ \text { (mmddyy) } \end{gathered}$ | Observatory Telescope | Detector Set-up | Filter Identification |
| :---: | :---: | :---: | :---: |
| 091482 | CTIO $1.5-\mathrm{m}$ | RCA 31034A-02; coldbox 58 | (Landolt 1983), Table III |
| 070583 | CTIO $1.5-\mathrm{m}$ | RCA 31034A-02; coldbox 59 | (Landolt 1983), Table III |
| 100584 | CTIO 0.9-m | RCA 31034A-02; coldbox 59 | (Landolt 1983), Table III |
| 101184 | CTIO 0.9-m | RCA 31034A-02; coldbox 59 | (Landolt 1983), Table III |
| 092585 | CTIO $1.5-\mathrm{m}$ | RCA 31034A-02; coldbox 59 | (Landolt 1983), Table III |
| 093085 | CTIO 4.0-m | RCA 31034A-05; coldbox 70 | (Landolt 1983), Table III |
| 100385 | CTIO 4.0-m | RCA 31034A-05; coldbox 70 | (Landolt 1983), Table III |
| 100585 | CTIO $1.5-\mathrm{m}$ | RCA 31034A-02; coldbox 59 | (Landolt 1983), Table III |
| 100785 | CTIO $1.5-\mathrm{m}$ | RCA 31034A-02; coldbox 59 | (Landolt 1983), Table III |
| 052486 | CTIO $1.5-\mathrm{m}$ | RCA 31034A-02; coldbox 59 | (Landolt 1983), Table III |
| 101286 | CTIO $1.5-\mathrm{m}$ | RCA 31034A-02; coldbox 59 | (Landolt 1983), Table III |
| 070187 | KPNO 1.3-m | RCA 31034A-02; coldbox 51 | (Landolt 2007), Table 1 |
| 091688 | CTIO $1.5-\mathrm{m}$ | Hamamatsu R943-02; coldbox 71 | (Landolt 1983), Table III |
| 102388 | CTIO $1.5-\mathrm{m}$ | Hamamatsu R943-02; coldbox 71 | (Landolt 1983), Table III |
| 092689 | CTIO $1.5-\mathrm{m}$ | Hamamatsu R943-02; coldbox 71 | (Landolt 1983), Table III |
| 060890 | CTIO $1.0-\mathrm{m}$ | Hamamatsu R943-02; coldbox 71 | (Landolt 1983), Table III |
| 062690 | KPNO 1.3-m | RCA 31034A-02; coldbox 51 | (Landolt 2007), Table 1 |
| 082490 | CTIO $1.5-\mathrm{m}$ | Hamamatsu R943-02; coldbox 71 | (Landolt 1983), Table III |
| 082690 | CTIO $1.5-\mathrm{m}$ | Hamamatsu R943-02; coldbox 71 | (Landolt 1983), Table III |
| 110790 | CTIO $1.5-\mathrm{m}$ | Hamamatsu R943-02; coldbox 71 | (Landolt 1983), Table III |
| 110890 | CTIO $1.5-\mathrm{m}$ | Hamamatsu R943-02; coldbox 71 | (Landolt 1983), Table III |
| 061791 | KPNO 1.3-m | RCA 31034A-02; coldbox 51 | (Landolt 2007), Table 1 |
| 100791 | KPNO 1.3-m | RCA 31034A-02; coldbox 51 | (Landolt 2007), Table 1 |
| 062992 | KPNO 1.3-m | RCA 31034A-02; coldbox 51 | (Landolt 2007), Table 1 |
| 061593 | CTIO $1.5-\mathrm{m}$ | RCA 31034; coldbox 58 | (Landolt 1983), Table III |
| 061693 | CTIO $1.5-\mathrm{m}$ | RCA 31034; coldbox 58 | (Landolt 1983), Table III |
| 061793 | CTIO $1.5-\mathrm{m}$ | RCA 31034; coldbox 58 | (Landolt 1983), Table III |
| 092493 | CTIO 1.0-m | Hamamatsu R943-02; coldbox 50 | (Landolt 1983), Table III |
| 092593 | CTIO $1.0-\mathrm{m}$ | Hamamatsu R943-02; coldbox 50 | (Landolt 1983), Table III |
| 072495 | CTIO $1.5-\mathrm{m}$ | Hamamatsu R943-02; coldbox 50 | (Landolt 1983), Table III |
| 073195 | CTIO $1.0-\mathrm{m}$ | Hamamatsu R943-02; coldbox 50 | (Landolt 1983), Table III |
| 092997 | CTIO $1.5-\mathrm{m}$ | Burle Industries 31034A-02; coldbox 60 | (Landolt 1983), Table III |
| 050898 | CTIO $1.5-\mathrm{m}$ | Burle Industries 31034A-02; coldbox 60 | (Landolt 1983), Table III |
| 072598 | CTIO $1.5-\mathrm{m}$ | Burle Industries 31034A-02; coldbox 60 | (Landolt 1983), Table III |
| 092598 | CTIO $1.5-\mathrm{m}$ | RCA 31034A-02; coldbox 53 | (Landolt 1983), Table III |
| 101099 | CTIO $1.5-\mathrm{m}$ | RCA 31034A-02; coldbox 53 | (Landolt 1983), Table III |
| 101299 | CTIO $1.5-\mathrm{m}$ | RCA 31034A-02; coldbox 53 | (Landolt 1983), Table III |
| 031000 | CTIO $1.5-\mathrm{m}$ | RCA 31034A-02; coldbox 53 | (Landolt 1983), Table III |
| 052300 | CTIO $1.5-\mathrm{m}$ | RCA 31034A-02; coldbox 53 | (Landolt 1983), Table III |
| 052900 | CTIO $1.5-\mathrm{m}$ | RCA 31034A-02; coldbox 53 | (Landolt 1983), Table III |
| 071900 | CTIO $1.5-\mathrm{m}$ | RCA 31034A-02; coldbox 53 | (Landolt 1983), Table III |
| 072000 | CTIO $1.5-\mathrm{m}$ | RCA 31034A-02; coldbox 53 | (Landolt 1983), Table III |
| 072300 | CTIO $1.5-\mathrm{m}$ | RCA 31034A-02; coldbox 53 | (Landolt 1983), Table III |
| 072400 | CTIO $1.5-\mathrm{m}$ | RCA 31034A-02; coldbox 53 | (Landolt 1983), Table III |
| 072500 | CTIO $1.5-\mathrm{m}$ | RCA 31034A-02; coldbox 53 | (Landolt 1983), Table III |
| 082500 | CTIO $1.5-\mathrm{m}$ | RCA 31034A-02; coldbox 53 | (Landolt 1983), Table III |
| 082600 | CTIO $1.5-\mathrm{m}$ | RCA 31034A-02; coldbox 53 | (Landolt 1983), Table III |
| 082700 | CTIO $1.5-\mathrm{m}$ | RCA 31034A-02; coldbox 53 | (Landolt 1983), Table III |
| 082800 | CTIO $1.5-\mathrm{m}$ | RCA 31034A-02; coldbox 53 | (Landolt 1983), Table III |
| 082900 | CTIO $1.5-\mathrm{m}$ | RCA 31034A-02; coldbox 53 | (Landolt 1983), Table III |
| 083000 | CTIO $1.5-\mathrm{m}$ | RCA 31034A-02; coldbox 53 | (Landolt 1983), Table III |
| 102000 | CTIO $1.5-\mathrm{m}$ | RCA 31034A-02; coldbox 53 | (Landolt 1983), Table III |
| 102100 | CTIO $1.5-\mathrm{m}$ | RCA 31034A-02; coldbox 53 | (Landolt 1983), Table III |
| 062801 | CTIO $1.5-\mathrm{m}$ | RCA 31034A-02; coldbox 53 | (Landolt 1983), Table III |
| 072501 | CTIO $1.5-\mathrm{m}$ | RCA 31034A-02; coldbox 53 | (Landolt 1983), Table III |
| 082201 | CTIO $1.5-\mathrm{m}$ | RCA 31034A-02; coldbox 53 | (Landolt 1983), Table III |
| 100701 | CTIO $1.5-\mathrm{m}$ | RCA 31034A-02; coldbox 53 | (Landolt 1983), Table III |
| 100801 | CTIO $1.5-\mathrm{m}$ | RCA 31034A-02; coldbox 53 | (Landolt 1983), Table III |
| 100901 | CTIO $1.5-\mathrm{m}$ | RCA 31034A-02; coldbox 53 | (Landolt 1983), Table III |
| 101001 | CTIO $1.5-\mathrm{m}$ | RCA 31034A-02; coldbox 53 | (Landolt 1983), Table III |
| 101101 | CTIO $1.5-\mathrm{m}$ | RCA 31034A-02; coldbox 53 | (Landolt 1983), Table III |
| 101301 | CTIO $1.5-\mathrm{m}$ | RCA 31034A-02; coldbox 53 | (Landolt 1983), Table III |
| 101501 | CTIO $1.5-\mathrm{m}$ | RCA 31034A-02; coldbox 53 | (Landolt 1983), Table III |
| 101601 | CTIO 1.5-m | RCA 31034A-02; coldbox 53 | (Landolt 1983), Table III |

Table 2. RMS photometric errors per night recovered from standard stars.

| UT <br> (mmddyy) | $\begin{gathered} H J D \\ 2400000.0+ \end{gathered}$ | Telescope | Filter | RMS Errors Recovered Standards |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | V | ( $B-V$ ) | $(U-B)$ | $(V-R)$ | $(R-I)$ | $(V-I)$ |
| 091482 | 45226.5 | CTIO $1.5-\mathrm{m}$ | UBVRI | 0.016 | 0.014 | 0.050 | 0.008 | 0.008 | 0.008 |
| 070583 | 45520.5 | CTIO $1.5-\mathrm{m}$ | UBVRI | 0.006 | 0.007 | 0.006 | 0.003 | 0.004 | 0.004 |
| 100584 | 45978.5 | CTIO 0.9-m | UBVRI | 0.010 | 0.006 | 0.015 | 0.008 | 0.005 | 0.007 |
| 101184 | 45984.5 | CTIO 0.9-m | UBVRI | 0.016 | 0.005 | 0.027 | 0.005 | 0.003 | 0.004 |
| 092585 | 46333.5 | CTIO $1.5-\mathrm{m}$ | UBVRI | 0.012 | 0.011 | 0.032 | 0.014 | 0.011 | 0.018 |
| 093085 | 46338.5 | CTIO 4.0-m | UBVRI | 0.012 | 0.020 | 0.100 | 0.007 | 0.012 | 0.017 |
| 100385 | 46341.5 | CTIO 4.0-m | UBVRI | 0.037 | 0.040 | 0.054 | 0.035 | 0.043 | 0.068 |
| 100585 | 46343.5 | CTIO $1.5-\mathrm{m}$ | UBVRI | 0.010 | 0.007 | 0.043 | 0.003 | 0.006 | 0.008 |
| 100785 | 46345.5 | CTIO $1.5-\mathrm{m}$ | UBVRI | 0.007 | 0.011 | 0.052 | 0.009 | 0.005 | 0.012 |
| 052486 | 46574.5 | CTIO $1.5-\mathrm{m}$ | UBVRI | 0.004 | 0.008 | 0.025 | 0.006 | 0.017 | 0.017 |
| 101286 | 46715.5 | CTIO $1.5-\mathrm{m}$ | UBVRI | 0.010 | 0.014 | 0.036 | 0.007 | 0.011 | 0.009 |
| 070187 | 46977.5 | KPNO 1.3-m | UBVRI | 0.019 | 0.022 | 0.020 | 0.016 | 0.019 | 0.021 |
| 091688 | 47420.5 | CTIO 1.5-m | UBVRI | 0.004 | 0.010 | 0.032 | 0.006 | 0.006 | 0.007 |
| 102388 | 47457.5 | CTIO $1.5-\mathrm{m}$ | UBVRI | 0.009 | 0.010 | 0.042 | 0.008 | 0.006 | 0.009 |
| 092689 | 47795.5 | CTIO $1.5-\mathrm{m}$ | UBVRI | 0.009 | 0.011 | 0.041 | 0.005 | 0.006 | 0.010 |
| 060890 | 48050.5 | CTIO 1.0-m | UBVRI | 0.006 | 0.011 | 0.028 | 0.006 | 0.010 | 0.012 |
| 062690 | 48068.5 | KPNO 1.3-m | UBVRI | 0.020 | 0.007 | 0.017 | 0.005 | 0.009 | 0.013 |
| 082490 | 48127.5 | CTIO $1.5-\mathrm{m}$ | UBVRI | 0.011 | 0.009 | 0.032 | 0.006 | 0.005 | 0.006 |
| 082690 | 48129.5 | CTIO $1.5-\mathrm{m}$ | UBVRI | 0.010 | 0.008 | 0.029 | 0.005 | 0.008 | 0.009 |
| 110790 | 48202.5 | CTIO $1.5-\mathrm{m}$ | UBVRI | 0.007 | 0.008 | 0.034 | 0.007 | 0.008 | 0.011 |
| 110890 | 48203.5 | CTIO $1.5-\mathrm{m}$ | UBVRI | 0.008 | 0.014 | 0.038 | 0.006 | 0.007 | 0.010 |
| 061791 | 48424.5 | KPNO 1.3-m | UBVRI | 0.006 | 0.006 | 0.023 | 0.005 | 0.006 | 0.008 |
| 100791 | 48536.5 | KPNO 1.3-m | UBVRI | 0.012 | 0.007 | 0.022 | 0.007 | 0.008 | 0.013 |
| 062992 | 48802.5 | KPNO 1.3-m | UBVRI | 0.008 | 0.007 | 0.014 | 0.007 | 0.003 | 0.006 |
| 051193 | 49118.5 | KPNO 0.9-m | UBVRI | 0.015 | 0.016 | 0.051 | 0.023 | 0.007 | 0.022 |
| 061593 | 49153.5 | CTIO $1.5-\mathrm{m}$ | UBVRI | 0.008 | 0.009 | 0.022 | 0.004 | 0.014 | 0.016 |
| 061693 | 49154.5 | CTIO $1.5-\mathrm{m}$ | UBVRI | 0.007 | 0.004 | 0.016 | 0.005 | 0.009 | 0.011 |
| 061793 | 49155.5 | CTIO 1.5-m | UBVRI | 0.008 | 0.007 | 0.028 | 0.006 | 0.005 | 0.009 |
| 092493 | 49254.4 | CTIO 1.0-m | UBVRI | 0.009 | 0.010 | 0.028 | 0.008 | 0.032 | - |
| 092593 | 49255.5 | CTIO 1.0-m | UBVRI | 0.010 | 0.008 | 0.031 | 0.011 | 0.024 | - |
| 072495 | 49922.5 | CTIO $1.5-\mathrm{m}$ | UBVRI | 0.007 | 0.009 | 0.020 | 0.004 | 0.010 | 0.011 |
| 073195 | 49929.5 | CTIO $1.0-\mathrm{m}$ | UBV | 0.004 | 0.008 | 0.020 | - | - | - |
| 092997 | 50720.5 | CTIO $1.5-\mathrm{m}$ | UBVRI | 0.006 | 0.009 | 0.031 | 0.004 | 0.007 | 0.008 |
| 050898 | 50941.5 | CTIO $1.5-\mathrm{m}$ | UBVRI | 0.008 | 0.009 | 0.014 | 0.004 | 0.005 | 0.004 |
| 072598 | 51019.5 | CTIO $1.5-\mathrm{m}$ | UBVRI | 0.015 | 0.014 | 0.020 | 0.006 | 0.011 | 0.014 |
| 092598 | 51081.5 | CTIO $1.5-\mathrm{m}$ | UBVRI | 0.008 | 0.009 | 0.032 | 0.007 | 0.011 | 0.014 |
| 101099 | 51461.5 | CTIO $1.5-\mathrm{m}$ | UBVRI | 0.004 | 0.010 | 0.033 | 0.003 | 0.007 | 0.005 |
| 101299 | 51463.5 | CTIO $1.5-\mathrm{m}$ | UBVRI | 0.005 | 0.006 | 0.033 | 0.004 | 0.008 | 0.008 |
| 031000 | 51613.5 | CTIO $1.5-\mathrm{m}$ | UBVRI | 0.010 | 0.008 | 0.016 | 0.006 | 0.005 | 0.006 |
| 052300 | 51687.5 | CTIO $1.5-\mathrm{m}$ | UBVRI | 0.008 | 0.010 | 0.019 | 0.006 | 0.012 | 0.015 |
| 052900 | 51693.5 | CTIO $1.5-\mathrm{m}$ | UBVRI | 0.008 | 0.012 | 0.023 | 0.004 | 0.006 | 0.007 |
| 071900 | 51744.5 | CTIO $1.5-\mathrm{m}$ | UBVRI | 0.007 | 0.007 | 0.020 | 0.004 | 0.004 | 0.007 |
| 072000 | 51745.5 | CTIO $1.5-\mathrm{m}$ | UBVRI | 0.006 | 0.009 | 0.026 | 0.003 | 0.010 | 0.011 |
| 072300 | 51748.5 | CTIO $1.5-\mathrm{m}$ | UBVRI | 0.004 | 0.008 | 0.016 | 0.004 | 0.005 | 0.006 |
| 072400 | 51749.5 | CTIO $1.5-\mathrm{m}$ | UBVRI | 0.007 | 0.007 | 0.015 | 0.004 | 0.006 | 0.008 |
| 072500 | 51750.5 | CTIO $1.5-\mathrm{m}$ | UBVRI | 0.005 | 0.008 | 0.020 | 0.003 | 0.004 | 0.006 |
| 082500 | 51781.5 | CTIO $1.5-\mathrm{m}$ | UBVRI | 0.010 | 0.011 | 0.036 | 0.005 | 0.008 | 0.009 |
| 082600 | 51782.5 | CTIO $1.5-\mathrm{m}$ | UBVRI | 0.006 | 0.009 | 0.031 | 0.004 | 0.007 | 0.008 |
| 082700 | 51783.5 | CTIO $1.5-\mathrm{m}$ | UBVRI | 0.009 | 0.010 | 0.033 | 0.003 | 0.011 | 0.010 |
| 082800 | 51784.5 | CTIO $1.5-\mathrm{m}$ | UBVRI | 0.006 | 0.010 | 0.036 | 0.003 | 0.006 | 0.005 |
| 082900 | 51785.5 | CTIO $1.5-\mathrm{m}$ | UBVRI | 0.007 | 0.008 | 0.031 | 0.004 | 0.006 | 0.007 |
| 083000 | 51786.5 | CTIO $1.5-\mathrm{m}$ | UBVRI | 0.010 | 0.009 | 0.014 | 0.004 | 0.002 | 0.005 |
| 102000 | 51837.5 | CTIO $1.5-\mathrm{m}$ | UBVRI | 0.008 | 0.009 | 0.033 | 0.003 | 0.005 | 0.006 |
| 102100 | 51838.5 | CTIO $1.5-\mathrm{m}$ | UBVRI | 0.007 | 0.010 | 0.031 | 0.003 | 0.006 | 0.006 |
| 062801 | 52088.5 | CTIO $1.5-\mathrm{m}$ | UBVRI | 0.007 | 0.011 | 0.022 | 0.006 | 0.004 | 0.008 |
| 072501 | 52115.5 | CTIO $1.5-\mathrm{m}$ | UBVRI | 0.007 | 0.007 | 0.023 | 0.004 | 0.008 | 0.010 |
| 082201 | 52143.5 | CTIO $1.5-\mathrm{m}$ | UBVRI | 0.008 | 0.011 | 0.031 | 0.005 | 0.008 | 0.011 |
| 100701 | 52189.5 | CTIO $1.5-\mathrm{m}$ | UBVRI | 0.010 | 0.010 | 0.034 | 0.005 | 0.014 | 0.015 |
| 100801 | 52190.5 | CTIO $1.5-\mathrm{m}$ | UBVRI | 0.009 | 0.013 | 0.033 | 0.004 | 0.016 | 0.017 |
| 100901 | 52191.5 | CTIO $1.5-\mathrm{m}$ | UBVRI | 0.009 | 0.013 | 0.035 | 0.005 | 0.005 | 0.007 |
| 101001 | 52192.5 | CTIO $1.5-\mathrm{m}$ | UBVRI | 0.010 | 0.008 | 0.031 | 0.005 | 0.009 | 0.011 |
| 101101 | 52193.5 | CTIO $1.5-\mathrm{m}$ | UBVRI | 0.007 | 0.011 | 0.033 | 0.005 | 0.011 | 0.012 |
| 101301 | 52195.5 | CTIO $1.5-\mathrm{m}$ | UBVRI | 0.005 | 0.010 | 0.033 | 0.005 | 0.006 | 0.007 |
| 101501 | 52197.5 | CTIO $1.5-\mathrm{m}$ | UBVRI | 0.007 | 0.010 | 0.037 | 0.007 | 0.029 | 0.031 |
| 101601 | 52198.5 | CTIO $1.5-\mathrm{m}$ | UBVRI | 0.009 | 0.012 | 0.040 | 0.007 | 0.012 | 0.016 |
|  |  |  | ave. | 0.009 | 0.010 | 0.030 | 0.006 | 0.009 | 0.011 |
|  |  |  | $\pm$ | 0.005 | 0.005 | 0.013 | 0.005 | 0.007 | 0.009 |

Table 3. V348 Sgr photoelectric data.

| $H J D$ | V | $(B-V)$ | ( $U-B$ ) | $(V-R)$ | ( $R-I$ ) | (V-I) | $H J D$ | V | $(B-V)$ | ( $U-B$ ) | $(V-R)$ | ( $R-I$ ) | $(V-I)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2445226.53218 | 12.744 | +0.559 | $-0.375$ | +0.398 | $+0.363$ | +0.761 | 2449254.56876 | 15.49 | +0.8 | - | - | - | - |
| 2445226.53466 | 12.726 | +0.562 | $-0.370$ | +0.409 | $+0.363$ | $+0.772$ | 2449254.57160 | 15.34 | +1.6 | - | - | - |  |
| 2445520.76341 | 13.238 | +0.664 | $-0.249$ | +0.459 | $+0.444$ | +0.903 | 2449255.50394 | 15.52 | +0.9 | - | - | - |  |
| 2445978.59159 | 13.977 | +0.911 | -0.033 | +0.645 | $+0.566$ | +1.213 | 2449922.67670 | 11.951 | $+0.353$ | $-0.668$ | +0.284 | $+0.281$ | $+0.564$ |
| 2445984.54833 | 14.143 | +1.161 | $-0.185$ | +0.596 | $+0.569$ | +1.167 | 2449922.68047 | 11.948 | $+0.365$ | $-0.704$ | $+0.276$ | +0.296 | +0.571 |
| 2446333.52951 | 19.053 | +0.272 | $-1.532$ | +2.078 | +0.743 | +2.856 | 2449929.50884 | 11.874 | $+0.323$ | $-0.694$ | - | - | - |
| 2446333.53762 | 17.825 | +0.532 | $-0.960$ | +1.211 | $+0.340$ | +1.574 | 2450941.82178 | 12.590 | $+0.529$ | $-0.402$ | +0.401 | +0.399 | +0.799 |
| 2446338.51876 | 18.583 | +1.090 | $-0.426$ | +1.104 | +0.746 | +1.854 | 2451019.74143 | 11.885 | $+0.401$ | $-0.608$ | +0.280 | +0.298 | +0.578 |
| 2446341.53179 | 17.702 | +0.613 | -0.912 | +0.952 | $+0.512$ | +1.491 | 2451081.53852 | 11.845 | $+0.337$ | $-0.695$ | +0.268 | +0.266 | +0.534 |
| 2446341.53922 | 17.755 | +0.634 | -0.989 | +0.915 | +0.607 | +1.541 | 2451461.53119 | 17.113 | $+0.517$ | $-0.827$ | +0.933 | +0.309 | +1.247 |
| 2446343.54113 | 17.967 | +0.056 | -1.026 | +1.697 | +0.763 | +2.475 | 2451463.54158 | 17.133 | +0.365 | $-0.673$ | +0.943 | +0.532 | +1.476 |
| 2446345.52463 | 16.532 | +0.822 | $-0.595$ | +1.041 | +0.659 | +1.707 | 2451613.86655 | 12.421 | $+0.490$ | $-0.438$ | +0.366 | +0.331 | +0.698 |
| 2446574.87950 | 17.519 | +0.197 | - | - | - | - | 2451693.77032 | 17.407 | $+0.321$ | $-0.895$ | +0.922 | +0.105 | +1.027 |
| 2446574.88446 | 16.538 | +1.426 | - | - | - | - | 2451744.73326 | 15.752 | +1.547 | $+0.087$ | +0.981 | $+0.833$ | +1.819 |
| 2446715.52914 | 17.367 | +2.075 |  |  |  | - | 2451745.75336 | 15.811 | +1.256 | $+0.172$ | +0.881 | $+0.728$ | +1.610 |
| 2446715.53758 | 17.662 | +0.855 | $-0.560$ | +1.189 | $+0.702$ | +1.895 | 2451748.64006 | 15.976 | +1.006 | $-0.457$ | +0.943 | $+0.714$ | +1.658 |
| 2446977.79809 | 16.778 | +0.577 | $-0.757$ | +1.072 | $+0.536$ | +1.622 | 2451748.65226 | 16.056 | +1.119 | $-0.428$ | +0.936 | $+0.846$ | +1.780 |
| 2447420.52371 | 14.837 | +1.256 | +0.850 | +0.711 | +0.694 | +1.408 | 2451749.66877 | 15.997 | $+0.965$ | -0.474 | +0.965 | $+0.673$ | +1.637 |
| 2447420.52916 | 14.862 | +1.189 | +1.036 | +0.726 | +0.677 | +1.400 | 2451750.71958 | 15.901 | +1.053 | $-0.456$ | +0.941 | $+0.778$ | +1.721 |
| 2447457.54620 | 14.857 | +1.426 | - | +0.682 | +0.667 | +1.344 | 2451781.52578 | 13.240 | +0.717 | $-0.217$ | $+0.470$ | +0.465 | +0.937 |
| 2448050.71173 | 12.011 | +0.362 | $-0.650$ | +0.317 | $+0.281$ | +0.594 | 2451782.54509 | 13.173 | +0.691 | $-0.230$ | $+0.451$ | $+0.453$ | +0.905 |
| 2448068.81702 | 11.992 | +0.394 | $-0.603$ | $+0.300$ | +0.297 | +0.596 | 2451783.61339 | 13.164 | $+0.665$ | $-0.218$ | +0.456 | $+0.440$ | +0.892 |
| 2448127.65392 | 14.722 | +0.756 | $-0.260$ | +0.575 | +0.497 | +1.070 | 2451784.59330 | 13.098 | +0.665 | $-0.241$ | $+0.461$ | +0.442 | +0.900 |
| 2448127.65874 | 14.776 | +0.720 | -0.284 | +0.621 | +0.468 | +1.086 | 2451785.57684 | 13.113 | +0.658 | -0.232 | +0.459 | $+0.433$ | +0.892 |
| 2448129.67057 | 15.614 | +0.685 | -0.448 | +0.697 | $+0.547$ | +1.239 | 2451786.61392 | 13.134 | $+0.652$ | $-0.244$ | +0.454 | +0.446 | +0.900 |
| 2448129.67842 | 15.582 | +0.687 | -0.473 | +0.677 | $+0.551$ | +1.222 | 2451837.53474 | 13.071 | $+0.644$ | $-0.225$ | +0.464 | $+0.443$ | +0.912 |
| 2448202.52816 | 15.616 | +0.937 | $-0.236$ | +0.825 | +0.653 | +1.474 | 2451838.54138 | 13.059 | $+0.650$ | $-0.253$ | +0.458 | +0.441 | +0.894 |
| 2448203.53091 | 15.482 | +0.994 | -0.190 | +0.620 | +0.793 | +1.403 | 2452088.79054 | 17.370 | $+0.575$ | $-0.696$ | +0.918 | +0.099 | +1.019 |
| 2448536.61322 | 13.478 | +0.811 | -0.028 | +0.545 | $+0.500$ | +1.046 | 2452143.56922 | 17.277 | $+0.494$ | $-0.827$ | +1.197 | $+0.844$ | +2.042 |
| 2448536.61628 | 13.463 | +0.825 | -0.113 | +0.558 | +0.452 | +1.013 | 2452189.53989 | 14.072 | $+0.915$ | +0.026 | +0.606 | +0.487 | +1.089 |
| 2449118.97954 | 18.13 | -0.20 | - | +1.86 | +0.79 | +2.62 | 2452190.55294 | 13.896 | +0.918 | $-0.050$ | +0.614 | $+0.566$ | +1.182 |
| 2449153.78668 | 17.183 | +0.594 | $-0.773$ | - | - | - | 2452191.57834 | 13.782 | $+0.882$ | $+0.007$ | $+0.587$ | $+0.510$ | +1.105 |
| 2449153.79625 | 17.282 | +0.618 | $-0.850$ | - | - | - | 2452192.57987 | 13.731 | $+0.864$ | $-0.010$ | $+0.580$ | $+0.510$ | +1.085 |
| 2449154.75816 | 17.273 | +0.456 | $-0.781$ | +1.176 | $+0.695$ | +1.864 | 2452193.57090 | 13.647 | $+0.857$ | -0.011 | +0.566 | $+0.511$ | +1.093 |
| 2449154.77087 | 17.274 | +0.441 | $-0.763$ | +1.070 | $+0.529$ | +1.592 | 2452195.57484 | 13.587 | $+0.817$ | $-0.128$ | +0.509 | $+0.488$ | +1.017 |
| 2449155.80644 | 17.375 | +0.555 | $-0.964$ | +1.060 | +0.492 | +1.551 | 2452197.57594 | 13.428 | $+0.773$ | $-0.125$ | +0.518 | $+0.487$ | +0.989 |
| 2449155.81863 | 17.772 | +0.375 | -1.067 | +1.528 | +0.598 | +2.125 | 2452198.57746 | 13.420 | $+0.736$ | $-0.140$ | +0.507 | +0.419 | +0.928 |

$1.5-\mathrm{m}$ telescope. Also on the night of 2001 July 25 , at $03^{\mathrm{h}} 22^{\mathrm{m}} 00^{\mathrm{s}}$ UT, HJD 2452115.64028, V348 Sgr was barely visible, and too faint to measure. In each of these two instances, the observing $\log$ indicates that it was estimated that $V \sim 16$ th magnitude.

Johnson $V$ magnitude photoelectric data from the observations reported in this manuscript, Table 3, then were overlayed in Figure 2 onto the AAVSO database observations. Our photoelectric observations are plotted in red. One is reminded that the AAVSO database observations are in Julian Days (JDs), whereas the authors' are in Heliocentric Julian Days (HJDs).

CCD data for V348 Sgr, from Table 4 and plotted with green symbols in Figure 2, were obtained by JLC at the CTIO Yale 1.0-m telescope in the interval 2008 June 29 to 2010 May 13 $U T$ ( $2454646.7<U T<2455329.7$ ). Figure 2, therefore, is a composite of the $V$ data with the AAVSO data shown in black, the photoelectric data in red, and the CCD data in green.

Figure 3 is the result of 33 images taken over an elevennight run at the LCO Swope $1.0-\mathrm{m}$ telescope in the time interval UT 1992 October 5 through 1992 October 15 (2448901<HJD $<2448911$ ). V348 Sgr serendipitously was caught brightening some three magnitudes over these eleven nights (Landolt and Uomoto 1992). These data are in Table 4.

Figure 4 finds V348 Sgr more or less constant near 18th $V$ magnitude over a six-night interval, UT 1996 August through 1996 August 11 ( $2450301<$ HJD < 2450306), from data also taken at the Swope telescope. The scale of the figure matches that of Figure 3 for ease of comparison. These data are in Table 4.

Figures 5 and 6 illustrate the behavior of the $U B V R I$ photoelectric color indices as a function of Heliocentric Julian Day (HJD), using the same HJD scale as in Figure 2. These data are in Table 3. Except for $(R-I)$, each color index exhibits a maximum change of two magnitudes. These differences arise since at maximum brightness, the hot R CrB star dominates, whereas at minimum light, the planetary nebulosity dominates.

Figures 7 (60 images), 8 ( 81 images), and 9 ( 141 images) present the $V$ filter CCD data obtained by JLC at the CTIO Yale $1.0-\mathrm{m}$ telescope on the successive nights of UT 2007 May 21 and 22. These data are in Table 4. Several of the data points in Figure 7 exhibit larger error bars which resulted from intermittent clouds at that point in the night. The purpose of Figure 9 is to show V348 Sgr's behavior near maximum brightness on successive nights. Although not periodic, real variations through the $V$ filter are visible at the three percent level. Percy and Dembski (2018) note that "most or all RCrB


Figure 3. CCD data from the Las Campanas Observatory's Swope 1.0-m telescope for eleven nights in the interval $2448901 \leq$ HJD $\leq 2448911$.


Figure 4. CCD data from the Las Campanas Observatory's Swope 1.0-m telescope for six nights in the interval $2450301 \leq$ HJD $\leq 2450306$.


Figure 5. Photoelectric $(U-B)$ color index data as a function of HJD for V348 Sgr from this paper.


Figure 6. Photoelectric $(B-V),(V-R),(R-I)$, and $(V-I)$ color index data as a function of HJD for V348 Sgr from this paper.


Figure 7. CCD data from the CTIO Yale 1.0-m telescope for UT 2007 May 21 (HJD 2454241).


Figure 8. CCD data from the CTIO Yale 1.0-m telescope for UT 2007 May 22 (HJD 2454242).

Table 4. V348 Sgr CCD data.

| $H J D$ | V | SDev | $H J D$ | V | SDev | HJD | V | SDev |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2448901.547356 | 16.401 | 0.0138 | 2454241.762122 | 13.951 | 0.0034 | 2454242.672442 | 13.979 | 0.0012 |
| 2448901.548930 | 16.435 | 0.0168 | 2454241.764096 | 13.948 | 0.0021 | 2454242.675115 | 13.980 | 0.0014 |
| 2448901.550446 | 16.445 | 0.0136 | 2454241.766075 | 13.936 | 0.0021 | 2454242.677788 | 13.976 | 0.0014 |
| 2448902.551609 | 16.292 | 0.0088 | 2454241.768054 | 13.941 | 0.0022 | 2454242.680462 | 13.973 | 0.0013 |
| $2448902.553136$ | 16.302 | 0.0100 | 2454241.770034 | 13.959 | 0.0034 | 2454242.683137 | 13.979 | 0.0014 |
| 2448902.554652 | 16.301 | 0.0093 | 2454241.772013 | 13.947 | 0.0022 | 2454242.685810 | 13.977 | 0.0013 |
| 2448903.516791 | 16.040 | 0.0104 | 2454241.773988 | 13.958 | 0.0029 | 2454242.688483 | 13.982 | 0.0012 |
| $2448903.518341$ | 16.046 | 0.0108 | 2454241.775970 | 13.937 | 0.0079 | 2454242.691154 | 13.986 | 0.0013 |
| 2448903.519915 | 16.036 | 0.0101 | 2454241.777949 | 13.950 | 0.0120 | 2454242.693826 | 13.986 | 0.0013 |
| 2448904.562916 | 15.813 | 0.0094 | 2454241.779927 | 13.967 | 0.0056 | 2454242.696498 | 13.983 | 0.0013 |
| $2448904.564467$ | 15.812 | 0.0104 | 2454241.781907 | 13.937 | 0.0071 | 2454242.699171 | 13.981 | $0.0013$ |
| 2448904.565994 | 15.810 | 0.0136 | 2454241.783887 | 13.956 | 0.0043 | 2454242.701844 | 13.992 | 0.0013 |
| 2448905.557783 | 15.550 | 0.0070 | 2454241.785862 | 13.949 | 0.0049 | 2454242.704516 | 13.983 | 0.0013 |
| 2448905.559288 | 15.540 | 0.0067 | 2454241.787841 | 13.960 | 0.0026 | 2454242.707190 | 13.988 | $0.0013$ |
| 2448905.560804 | 15.557 | 0.0086 | 2454241.789819 | 13.952 | 0.0022 | 2454242.709863 | 13.987 | 0.0012 |
| 2448906.535650 | 15.213 | 0.0072 | 2454241.791799 | 13.952 | 0.0024 | 2454242.712602 | 13.988 | 0.0012 |
| 2448906.537201 | 15.208 | 0.0063 | 2454241.793773 | 13.949 | 0.0030 | 2454242.715273 | 13.985 | 0.0013 |
| 2448906.538728 | 15.200 | 0.0052 | 2454241.795753 | 13.957 | 0.0021 | 2454242.717948 | 13.992 | 0.0012 |
| 2448907.523631 | 14.938 | 0.0047 | 2454241.797731 | 13.979 | 0.0024 | 2454242.720620 | 13.992 | 0.0012 |
| 2448907.525147 | 14.941 | 0.0038 | 2454241.799711 | 13.973 | 0.0026 | 2454242.723293 | 13.996 | 0.0012 |
| 2448907.526663 | 14.947 | 0.0041 | 2454241.801689 | 13.960 | 0.0067 | 2454242.725964 | 13.992 | 0.0015 |
| 2448908.567627 | 14.510 | 0.0071 | 2454241.803670 | 13.951 | 0.0119 | 2454242.728635 | 13.989 | 0.0012 |
| 2448908.569143 | 14.515 | 0.0080 | 2454241.805650 | 13.973 | 0.0029 | 2454242.731309 | 13.989 | 0.0012 |
| 2448908.570659 | 14.512 | 0.0072 | 2454241.807630 | 13.965 | 0.0038 | 2454242.733983 | 13.990 | 0.0012 |
| 2448909.574543 | 14.196 | 0.0084 | 2454241.809610 | 13.967 | 0.0020 | 2454242.736654 | 13.990 | 0.0014 |
| 2448909.576059 | 14.191 | 0.0067 | 2454241.811591 | 13.976 | 0.0025 | 2454242.739329 | 13.993 | 0.0013 |
| 2448909.577633 | 14.193 | 0.0090 | 2454241.813570 | 13.969 | 0.0020 | 2454242.742000 | 13.992 | 0.0014 |
| 2448910.568671 | 13.885 | 0.0021 | 2454241.815549 | 13.956 | 0.0016 | 2454242.744677 | 13.989 | 0.0015 |
| 2448910.570187 | 13.889 | 0.0022 | 2454241.818235 | 13.957 | 0.0017 | 2454242.747347 | 13.982 | 0.0015 |
| 2448910.571692 | 13.898 | 0.0020 | 2454241.820215 | 13.964 | 0.0018 | 2454242.750024 | 13.976 | 0.0014 |
| 2448911.490260 | 13.590 | 0.0019 | 2454241.822195 | 13.966 | 0.0015 | 2454242.752699 | 13.980 | 0.0012 |
| 2448911.491787 | 13.593 | 0.0021 | 2454241.824173 | 13.957 | 0.0018 | 2454242.755370 | 13.980 | 0.0014 |
| 2448911.493303 | 13.603 | 0.0022 | 2454241.826152 | 13.967 | 0.0019 | 2454242.758043 | 13.981 | 0.0013 |
| 2449506.815125 | 17.995 | 0.0155 | 2454241.828131 | 13.965 | 0.0016 | 2454242.760722 | 13.983 | 0.0013 |
| 2449506.816201 | 18.042 | 0.0173 | 2454241.830110 | 13.960 | 0.0018 | 2454242.763400 | 13.988 | 0.0013 |
| 2450301.606179 | 18.067 | 0.0286 | 2454241.832084 | 13.957 | 0.0017 | 2454242.766083 | 13.989 | 0.0013 |
| 2450301.611734 | 18.137 | 0.0328 | 2454241.834063 | 13.953 | 0.0015 | 2454242.768760 | 13.995 | 0.0013 |
| 2450302.602382 | 18.126 | 0.0340 | 2454241.836039 | 13.948 | 0.0018 | 2454242.771430 | 13.992 | 0.0013 |
| 2450302.607127 | 18.091 | 0.0317 | 2454241.838019 | 13.948 | 0.0014 | 2454242.774107 | 13.992 | 0.0011 |
| 2450302.610171 | 18.154 | 0.0314 | 2454241.839999 | 13.951 | 0.0015 | 2454242.776777 | 13.990 | 0.0011 |
| 2450302.613226 | 18.101 | 0.0334 | 2454241.841977 | 13.950 | 0.0014 | 2454242.779453 | 13.985 | 0.0013 |
| 2450302.620876 | 18.182 | 0.0364 | 2454241.843955 | 13.954 | 0.0013 | 2454242.782125 | 13.981 | 0.0013 |
| 2450304.500927 | 18.011 | 0.0238 | 2454241.845930 | 13.947 | 0.0015 | 2454242.784798 | 13.968 | 0.0012 |
| $2450304.506204$ | 17.977 | 0.0209 | 2454241.847910 | 13.956 | 0.0014 | 2454242.787470 | 13.963 | 0.0013 |
| 2450304.511169 | 18.119 | 0.0323 | 2454241.849886 | 13.944 | 0.0013 | 2454242.790142 | 13.967 | 0.0013 |
| 2450304.521065 | 18.115 | 0.0310 | 2454241.851865 | 13.942 | 0.0013 | 2454242.792919 | 13.968 | 0.0014 |
| $2450304.525428$ | 18.065 | 0.0270 | 2454241.853844 | 13.945 | 0.0014 | 2454242.795594 | 13.974 | 0.0014 |
| 2450304.558736 | 18.064 | 0.0243 | 2454241.855824 | 13.951 | 0.0015 | 2454242.798267 | 13.974 | 0.0013 |
| 2450304.562497 | 18.080 | 0.0244 | 2454241.857804 | 13.953 | 0.0014 | 2454242.800942 | 13.975 | 0.0015 |
| 2450304.591616 | 18.150 | 0.0299 | 2454241.859784 | 13.958 | 0.0014 | 2454242.803615 | 13.974 | 0.0013 |
| 2450304.595632 | 18.145 | 0.0321 | 2454241.861764 | 13.959 | 0.0014 | 2454242.806288 | 13.974 | 0.0014 |
| 2450305.647652 | 18.403 | 0.0704 | 2454241.863741 | 13.965 | 0.0015 | 2454242.808960 | 13.978 | 0.0014 |
| 2450305.650696 | 18.377 | 0.0701 | 2454241.865715 | 13.964 | 0.0015 | 2454242.811634 | 13.978 | 0.0013 |
| 2450305.653635 | 18.299 | 0.0562 | 2454241.867698 | 13.971 | 0.0013 | 2454242.814307 | 13.983 | 0.0016 |
| 2450305.656991 | 18.297 | 0.0621 | 2454241.869673 | 13.971 | 0.0016 | 2454242.816980 | 13.988 | 0.0013 |
| 2450306.604062 | 18.168 | 0.0336 | 2454241.871654 | 13.978 | 0.0015 | 2454242.819781 | 13.989 | 0.0014 |
| 2450306.607985 | 18.090 | 0.0284 | 2454241.873629 | 13.984 | 0.0014 | 2454242.822440 | 13.989 | 0.0014 |
| 2450306.617510 | 18.166 | 0.0346 | 2454241.875611 | 13.977 | 0.0016 | 2454242.825117 | 13.986 | 0.0014 |
| 2451390.685563 | 18.627 | 0.0382 | 2454242.629041 | 13.972 | 0.0015 | 2454242.827790 | 13.978 | 0.0013 |
| 2451390.687126 | 18.619 | 0.0410 | 2454242.632351 | 13.977 | 0.0013 | 2454242.830463 | 13.976 | 0.0014 |
| 2451391.654418 | 18.484 | 0.0328 | 2454242.635026 | 13.976 | 0.0014 | 2454242.833141 | 13.973 | 0.0013 |
| 2451391.693443 | 18.556 | 0.0386 | 2454242.637699 | 13.979 | 0.0014 | 2454242.835814 | 13.978 | 0.0013 |
| 2451391.695110 | 18.550 | 0.0364 | 2454242.640372 | 13.976 | 0.0015 | 2454242.838489 | 13.983 | 0.0013 |
| 2451392.689621 | 18.453 | 0.0382 | 2454242.643045 | 13.976 | 0.0014 | 2454242.841163 | 13.986 | 0.0013 |
| 2451392.691288 | 18.436 | 0.0379 | 2454242.645717 | 13.970 | 0.0016 | 2454242.843837 | 13.993 | 0.0014 |
| 2451393.690630 | 17.952 | 0.0289 | 2454242.648391 | 13.975 | 0.0015 | 2456774.977437 | 18.212 | 0.0262 |
| 2451393.692123 | 17.946 | 0.0315 | 2454242.651062 | 13.980 | 0.0014 | 2456774.983091 | 18.272 | 0.0267 |
| 2451393.780509 | 17.848 | 0.0196 | 2454242.653735 | 13.973 | 0.0014 | 2456774.987899 | 18.353 | 0.0287 |
| 2451393.781991 | 17.802 | 0.0162 | 2454242.656407 | 13.972 | 0.0014 | 2456775.984039 | 18.367 | 0.0287 |
| 2451394.692395 | 17.924 | 0.0241 | 2454242.659079 | 13.977 | 0.0013 | 2456779.979752 | 18.492 | 0.0402 |
| 2452918.485326 | 14.830 | 0.0055 | 2454242.661752 | 13.981 | 0.0015 | 2456779.982046 | 18.460 | 0.0466 |
| 2452918.486622 | 14.835 | 0.0051 | 2454242.664424 | 13.978 | 0.0013 | 2456780.968839 | 18.434 | 0.0462 |
| 2454241.758161 | 13.944 | 0.0021 | 2454242.667097 | 13.980 | 0.0015 | 2456838.835146 | 16.047 | 0.0056 |
| 2454241.760140 | 13.942 | 0.0021 | 2454242.669770 | 13.984 | 0.0015 | 2456839.817621 | 15.787 | 0.0027 |

stars undergo small amplitude pulsations with periods of a few weeks." However, Figures 7, 8, and 9 illustrate that light variations also occur on the time scale of tens of minutes, say in the range of 0.01 to 0.1 day. Intensive monitoring should be filter-defined with integration times short enough to resolve short time variations, but long enough to obtain adequate signal to noise. Well calibrated observations through the Johnson $V$ filter are recommended, thereby permitting easier comparison to the majority of the photometric data in the literature.

It should be noted that the short timescale variations discovered herein contrast with those of the cooler R CrB stars (Clayton 1996). Many of the cooler R CrB stars have pulsation periods on the order of 40 to 100 days. It could be, of course, that such periods, mostly dependent upon observations in databases such as the AAVSO's, are more the result of the observing technique, a measurement per night over days and weeks. Intensive well-calibrated short timescale observations of the cooler R CrB stars also might be fruitful.

Looking at recent data displayed in the AAVSO database for V348 Sgr, in the time interval $2457100<$ HJD $<2458400$ (2008 December 8 to 2018 September 25), one notes the simultaneous decline in brightness in the $V$ and $I$ photometric passbands as V348 Sgr approaches minimum brightness. The decline in the $B$ passband is less. The $U$ photometric band data in this paper are the only such data known to the authors for V348 Sgr in this time frame.

Figures $10,11,12,13$, and 14 illustrate the behavior of the $(U-B),(B-V),(V-R),(R-I)$, and $(V-I)$ color indices as a function of the $V$ magnitude. The ordinate scale is the same for these figures to better illustrate the photometric behavior of V348 Sgr. As V348 Sgr fades, $(U-B)$ initially reddens and then, during the final five magnitudes of decline, becomes more blue.

Two points in Figure 10 stand out. The two reddest points are from 1988 September 16 UT. The data points taken at the CTIO 1.5-m on HJD 2447420.52371 and 2447420.52916 are at $V=14.837,(U-B)=+0.850$ and $V=14.862,(U-B)=+1.036$. Those data were taken through a $1.4-\mathrm{mm}$ diaphragm (14 arc seconds), as were the other photoelectric data. The observing $\log$ indicated raw data errors of $2 \%$ in $V, 4.8 \%$ in $(B-V), 13 \%$ in ( $U-B$ ), $1 \%$ in $(V-R), 2 \%$ in $(R-I)$, and $0.6 \%$ in $(V-I)$, as support for the validity of the plotted data points for this night's data. The two measures were taken 7.5 minutes of time apart. The standard star photometry errors were less than one percent for that night, except $3 \%$ for $(U-B)$. The sky was clear all night, with seeing between $2.5^{\mathrm{s}}$ and $3^{\mathrm{s}}$ of arc. Additional precise and accurate data taken when V348 Sgr is faint are needed.

Whereas the $(U-B)$ color index data points stand out in Figure 10, for V348 Sgr on UT 1988 September 16, measures in the $(B-V),(V-R),(R-I)$, and $(V-I)$ color indices do not in Figures $11,12,13$, and 14 , respectively. The AAVSO database observations of this date do not provide aid in interpretation. However, perusal of recent AAVSO database multicolor data in the time interval $2457100<\mathrm{HJD}<2458400$ show color indices for a magnitude of $V \sim 14.85$ to be similar to those found herein. There are no comparable $(U-B)$ data points in the AAVSO database. An interpretation is that the measured $(U-B)$ color index on 1988 September 16 results from the planetary nebula which surrounds V348 Sgr, not a satisfactory statement.


Figure 9. CCD data from the CTIO Yale 1.0-m telescope for UT 2007 May 21 and 22 (HJD 2454241 and 2454242).


Figure 10. $V$ magnitudes vs $(U-B)$ color index for the photoelectric data for V348 Sgr in this paper.


Figure 11. $V$ magnitudes vs $(B-V)$ color index for the photoelectric data for V348 Sgr in this paper.


Figure 12. $V$ magnitudes vs $(V-R)$ color index for the photoelectric data for V348 Sgr in this paper.


Figure 13. $V$ magnitudes vs $(R-I)$ color index for the photoelectric data for V348 Sgr in this paper.


Figure 14. $V$ magnitudes vs $(V-I)$ color index for the photoelectric data for V348 Sgr in this paper.


Figure 15. $(B-V)$ vs $(U-B)$ photoelectric data herein for V348 Sgr.


Figure 16. $(V-R)$ vs $(R-I)$ photoelectric data herein for V348 Sgr.


Figure 17. Maximum and minimum brightness of V348 Sgr as a function of effective wavelengths of UBVRI filters.


Figure 18. Behavior of $B$ magnitude near maximum light for V348 Sgr between 1896 and 1998; black circles from Schaefer (2016) and blue circles from data herein.


Figure 19. Behavior of $V$ magnitude of star C (red filled circles) on nights when it was observed along with V348 Sgr (black filled circles).

Figure 15 and Figure 16 show that as the shorter wavelength color index becomes more red, so does the longer wavelength color index. Figure 15 presents a definite but broad relationship between $(B-V)$ as a function of $(U-B)$ as both become more red. The relationship is tight in Figure 16 in the color index interval $(+0.3<(\mathrm{V}-\mathrm{R})<+0.7 ;+0.3<(\mathrm{R}-\mathrm{I})<+0.6)$, after which scatter increases due to the faintness of the star. As the referee wrote, "The bewildering pattern of data points in Figures 15 and 16 suggests a path for future investigation." What is needed is a series of well calibrated observations, particularly when V348 Sgr is faint.

The CCDphot data from UT 1993 May 11 are included in Table 3 at HJD 2449118.97954. Since these data were obtained at KPNO's $0.9-\mathrm{m}$ telescope at an air mass of 1.8 , the magnitude and color indices of a nearby star, C (see description of star C below), were adjusted to match that star's average magnitude and color indices as determined at CTIO, where the star was high in the sky. Such determined differences then were applied to the measured magnitude and color indices of V348 Sgr taken at KPNO, resulting in the values to be found in Table 3. The nearest in time observation, ten days earlier in the AAVSO
database, to which this photometry may be compared is an observation by Thomas Cragg where he determined a visual observation of fainter than 15.5 on JD 2449108.2.

Figure 17 is a summary, based on the data herein, of the brightness of V348 Sgr at maximum and minimum brightness as a function of wavelength through the $\mathrm{U}, \mathrm{B}, \mathrm{V}, \mathrm{R}$, and I Johnson Kron filters. The maxima were taken from dates where $V \approx 12$ th magnitude or brighter. The minima were taken from dates where $V \approx 18$ th magnitude or fainter. The error bars at minima light are larger just because the photometry is less accurate. Nevertheless, V348 Sgr is fainter at the $B$ wavelength at both maxima and minima when compared to the other filters. And V348 Sgr brightens at both maxima and minima as one proceeds from the $V$ to the $R$ to the $I$ filter. This follows from the discussion in Clayton et al. (2011).

Schaefer (2016) described a long term decline in the average $B$ magnitude of V348 Sgr. He illustrated this decline with archival data (his Table 2) and displayed in his Figure 2. These same data are presented as black filled circles in Figure 18 herein. Similar data from Table 3 herein are displayed as blue filled circles. The current data confirm the long term, but indicate a less steep decline. Actually the current photoelectric data show the maximum $B$ magnitude to have brightened somewhat. At least a partial explanation lies in the difficulty in identifying a time interval of maximum brightness.

A star, identified in Figure 1 as C, located to the north and east of V348 Sgr, at $\Delta \alpha=+1.075^{\mathrm{s}}$ and $\Delta \delta=+5.53$ ', was used as a comparison star. It was intermediate in brightness between the bright and faint limits of the light variations of V348 Sgr. This star appears in the UCAC4 Catalogue as UCAC4 336-170138 (Zacharias et al. 2013). Its coordinates from the Gaia proper motion catalogue, VizieR's catalogue I/343/gps1, are R.A. = $18^{\mathrm{h}} 40^{\mathrm{m}} 21.02934^{\mathrm{s}}$, Dec. $=-22^{\circ} 54^{\prime} 24.1221^{\prime \prime}$, J2000. This same catalogue lists this star's proper motion as $\mu_{\alpha}=-5.586 \pm 1.322$ and $\mu_{\delta}=+9.709 \pm 1.532 \mathrm{mas} \mathrm{yr}^{-1}$. The star labeled C herein is identified as star 12 in Figures 3a and 3b in Heck et al. (1985).

Ten photoelectric observations of star C, all taken at the CTIO $1.5-\mathrm{m}$ telescope, over a three-year interval provided an average magnitude and color indices of $V=14.788 \pm 0.024$, $(B-V)=+1.231 \pm 0.056,(U-B)=+0.872 \pm 0.054,(V-R)=$ $+0.668 \pm 0.031,(R-I)=+0.653 \pm 0.019$, and $(V-I)=+1.321$ $\pm 0.044$. Figure 19 illustrates the behavior of star C on nights when it was observed along with V348 Sgr itself.

As a byproduct of the CCD observations of V348 Sgr, 219 data points were obtained of star C through a Johnson $V$ filter on 31 nights. The resulting magnitude was $V=14.791 \pm$ 0.013 , in good agreement with the photoelectric results. The corresponding color indices from star C's CCD data are ( $B-V$ ) $=+1.224 \pm 0.002,(U-B)=+0.880 \pm 0.006,(V-R)=+0.685 \pm$ $0.002,(R-I)=+0.655 \pm 0.0025$, and $(V-I)=+1.340 \pm 0.002$.

This is particularly gratifying since star C is faint for photoelectric measurements at a $1.5-\mathrm{m}$ telescope, especially in as crowded a field as is evidenced in Figure 1. Identifying the same spot for a photoelectrically-based sky background reading consistently night to night over years is tricky. That is why CCDs excel in crowded fields, as if additional evidence is needed.

## 4. Summary

Calibrated photometric photoelectric, CCDphot, and CCD data of the hot R CrB star V348 Sgr have been obtained by the authors over an interval of 21.6 years. The current data confirm a long term decline in brightness, but with a smaller slope than heretofore determined. These accurate multicolor photometric data aid in the zero point determination of data in databases and in the definition of the long-term photometric behavior of the light and color curves for V348 Sgr. Intensive monitoring is crucial for understanding the apparent short time variations. These data should be calibrated and filter defined.

## 5. Acknowledgements

It is a pleasure to thank the staffs of CTIO, KPNO, and LCO for their help in making the observing runs a success. The authors note with appreciation G. Clayton's comments, and recognize with gratitude the long term observation efforts of the AAVSO community. The authors thank the referee for helpful comments.

The data reported in this paper came from observing runs supported by AFOSR grant 82-0192, Space Telescope Science Institute grant STScI CW-0004-85, and NSF grants AST 9114457, 9313868, 9528177, 0097895, and 0803158.

## References

Clayton, G. C. 1996, Publ. Astron. Soc. Pacific, 108, 225. Clayton, G. C. 2012, J. Amer. Assoc. Var. Star Obs., 40, 539. Clayton, G. C., et al. 2011, Astron. J., 142, 54.
Clem, J. L., and Landolt, A. U. 2013, Astron. J., 146, 88.
De Marco, O., Clayton, G. C., Herwig, F., Pollacco, D. L., Clark, J. S., and Kilkenny, D. 2002, Astron. J., 123, 3387.

Gaia Collaboration, et al. 2016, Astron. Astrophys., 595A, 1. Gaia Collaboration, et al. 2018, Astron. Astrophys., 616A, 1.
Heck, A., Houziaux, L., Manfroid, J., Jones, D. H. P., and Andrews, P. J. 1985, Astron. Astrophys., Suppl. Ser., 61, 375.

Kafka, S. 2019, variable star observations from the AAVSO International Database (https://www.aavso.org/aavso-international-database).
Landolt, A. U. 1983, Astron. J., 88, 439.
Landolt, A. U. 1992, Astron. J., 104, 340.
Landolt, A. U. 2007, in The Future of Photometric, Spectrophotometric, and Polarimetric Standardization, ed., C. Sterken, ASP Conf. Ser. 364, Astronomical Society of the Pacific, San Francisco, 27.
Landolt, A. U., and Clem, J. L. 2017, J. Amer. Assoc. Var. Star Obs., 45, 159.
Landolt, A. U., and Uomoto, A. K. 1992, IAU Circ., No. 5640, 2.

Laycock, S., Tang, S., Grindlay, J., Los, E., Simcoe, R., and Mink, D. 2010, Astron. J., 140, 1062.
Percy, J. R., and Dembski, K. H. 2018, J. Amer. Assoc. Var. Star Obs., 46, 127.
Pollacco, D. L., Tadhunter, C. N., and Hill, P. W. 1990 Mon. Not. Roy. Astron. Soc., 245, 204.
Schaefer, B. E. 2016, Mon. Not. Roy. Astron. Soc., 460, 1233.
Schajn, P. 1929, Astron. Nachr., 235, 417.
Tody, D., and Davis, L. E. 1992, in Astronomical Data Analysis Software and Systems I, eds. D. M. Worrall, C. Biemesderfer, J. Barnes, ASP Conf. Ser. 25, Astronomical Society of the Pacific, San Francisco, 484.
Woods, I. E. 1926, Bull. Harvard Coll. Obs., No. 838, 11.
Zacharias, N., Finch, C. T., Girard, T. M., Henden, A., Bartlett, J. L., Monet, D. G., and Zacharias, M. I. 2013, Astron. J., 145, 44.

