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Abstract  We present light curve analysis of two variable stars, KID 11405559 and V342 Boo. KID 11405559 is selected from 
the Kepler Eclipsing Binary Catalog published by Kirk et al. (2016) and V342 Boo from a list of eclipsing binaries published by 
Kreiner (2004). In this paper, we present the light curves for these two objects using data collected at the 31-inch NURO telescope 
at Lowell Observatory in Flagstaff, Arizona, in three filters: Bessell B, V, and R. We generate truncated twelve-term Fourier fits for 
the light curves and quantify the O’Connell effect exhibited by these systems by calculating the difference ΔI in the heights of the 
primary and secondary maxima: the “Light Curve Asymmetry” (LCA) and the “O’Connell Effect Ratio” (OER). Additionally, we 
use the Fourier coefficients from the Fourier fit to confirm that KID 11405559 and V342 Boo are W UMa type eclipsing binary stars.

1. Introduction

	 The O’Connell Effect is the inequality in the out-of-eclipse 
maxima in the light curve of eclipsing binaries (O’Connell 
(1951). This inequality is unexpected, since one expects to 
receive the same amount of light from each of the components 
of the binary when the components are side-by-side, irrespective 
of which component is on which side. Several explanations have 
been proposed to explain the origin of this effect, but none of 
these theories are widely applicable to the systems exhibiting 
the O’Connell effect (see Wilsey and Beaky (2009)). The two 
models that have received attention recently are the “starspot” 
model and the “hotspot” model. The former model is based on 
introducing one or more starspots (regions cooler than the rest 
of the photosphere) on one, or both, components. The “hotspot” 
model is applicable for mass-transferring systems where the 
mass transfer impacts the accretion disk around the accreting 
star, resulting in an asymmetry in the luminosity of the binary 
system as viewed from Earth. Again, neither of these models 
is satisfactory—the “starspot” model essentially introduces 
an arbitrary number of free parameters with minimal, if any, 
constraints. Consequently, by adding any number of starspots of 
varying sizes, shapes, and temperatures it should be possible to 
fit any light curve. Also, the O’Connell effect has been observed 
in detached, over-contact, and semi-detached systems and so 
at best, the `hotspot' model can only work for a certain class of 
systems exhibiting the O’Connell effect.
	 Eclipsing binary systems are classified into three main 
categories, based on the shape and variations in the observed 
light curves. Of the three types, W UMa-type systems are of 
particular interest to us since their structure and evolution 
are still not completely understood. Their light curves are 

characterized by continuous variability and similar depths of the 
two minima, caused by the ellipsoidal nature and the proximity 
of the two components. These systems are to be distinguished 
from β-Lyrae-type systems which display continuous variability 
but different depths of the minima, and Algol-type systems 
which exhibit a nearly constant brightness outside of eclipses. 
Algols and β-Lyraes are usually considered to be detached and 
semi-detached systems, respectively, whereas W UMa systems 
are considered near or over-contact systems. The continuously 
varying, smooth light curves of W UMa systems are ideal for 
Fourier analysis.
	 In this paper, we discuss light curve analysis of two 
eclipsing binary systems selected from Kirk et al. (2016) and 
Kreiner (2004), namely KID 11405559 and V342 Boo. Firstly, 
we use the criteria set by Rucinski (1997) to classify these 
systems as either Algol, β-Lyrae, or W UMa-type systems. We 
focus on the asymmetries in the light curves in each of the filters 
by calculating the difference in the heights of the primary and 
secondary maxima (Δ I ), the “Light Curve Asymmetry” (LCA), 
and the”O’Connell Effect Ratio” (OER). The OER and LCA 
provide insight into the asymmetries of the light curve regions 
between the two eclipses (McCartney 1999). The OER is the 
ratio of the area under the curves between phases Φ = 0.0 to  
Φ = 0.5 and phases Φ = 0.5 to Φ  = 1.0 (see section 3 below). 
An OER > 1 implies that the first half of the light curve has 
more total flux than the second half. The LCA, on the other 
hand, measures the deviance from symmetry of the two halves 
of the light curve. If both halves are perfectly symmetric, then 
we would expect the LCA to be zero. Note that the LCA and 
OER quantify different aspects of the O’Connell effect. For 
example, an OER equal to 1 does not necessarily imply an 
LCA equal to 0. The reason for this is that one can imagine 
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a light curve with a tall but narrow peak maximum and short 
but wide secondary maximum. Although the areas under the 
curve of each region may be equal, the curves would be very 
asymmetric (Gardner 2015).
	 This project is part of an ongoing effort at Truman State 
University to introduce undergraduate students to differential 
aperture photometry by following several eclipsing binary 
systems per semester with the aim of generating and analyzing 
their light curves. As mentioned, we are focused on quantifying 
the asymmetries in the light curves and modeling the systems. 
System modeling is challenging without having spectroscopic 
data, since photometric data alone are not enough to constrain 
the system and determine a unique solution (Prša 2018). 
Consequently, we do not attempt to model the systems under 
consideration. However, we demonstrate that by superposing 
the two halves of an appropriately phased light curve, one can 
identify the phase at which the light curves are asymmetric 
(see section 3). In the starspot model, this phase information 
can be used to constrain the location and characteristics of the 
starspots. This information can be invaluable in testing the 
starspot model for EBs using high quality data over hundreds 
or thousands of orbital cycles —the kind of data we have 
access to from the Kepler (Prša 2011) and Transiting Exoplanet 
Survey Satellite (TESS) missions (Ricker et al. 2015). Indeed, 
our group is currently studying how the asymmetry in the light 
curve evolves over hundreds of orbits for several Kepler EBs 
(Koogler et al. 2019).
	 The outline of this paper is as follows: In the following 
section, we outline our observational data acquisition and data 
reduction methods, followed by an analysis of the light curves 
in section 3. We conclude in section 4 with a discussion on our 
results and our future plans.

2. Observations

	 We present BVR photometry of eclipsing variable stars 
KID 11405559 (P = 0.284941 d) and V342 Boo (P = 0.29936 d). 
The data were collected using the 2k × 2k Loral NASACam 
CCD attached to the 31-inch National Undergraduate Research 
Observatory (NURO) telescope at Lowell Observatory, 
Flagstaff, Arizona (Table 1). The filters used are Bessell BVR. 
The images are processed by bias subtraction and (sky) flat 
fielding using the software package maxim dl (Diffraction 
Limited 2012). No dark subtraction was performed since for the 
nitrogen-cooled camera at NURO, the dark current is negligible. 
Differential photometry is then performed on the target with 
a suitable comparison and check star, using maxim dl. The 

Table 1. Observation dates, instrument, and filters for the targets.

	 Target	 Date of Observation	 Telescope	 Filters

	 KID 11405559	 05/21/2017	 NURO	 Bessell BVR
		  05/22/2017	 NURO	 Bessell BVR
		  05/23/2017	 NURO	 Bessell BVR
		  05/24/2017	 NURO	 Bessell BVR

	 V342 Boo	 05/21/2017	 NURO	 Bessell BVR
		  05/22/2017	 NURO	 Bessell BVR

Table 2. Target, comparison, and check star coordinates, and comparison star B and V magnitudes.

	 Star	 Name	 R.A. (J2000)	 Dec. (J2000)	 V	 B
	 h	 m	 s	 °	 '	 "

	 Target	 KID 11405559	 19 32 54.16	 +49 14 33.2	
	 Comparison	 KID 11352756	 19 33 20.82	 +49 17 54.4	 11.22	 12.41
	 Check	 TYC 3564-1900-1	 19 32 19.00	 +49 10 47.7	 11.67	 14.07

	 Target	 V342 Boo	 13 59 53.52	 +17 53 57.4
	 Comparison	 —	 13 59 35.81	 +17 50 42.8	 13.116	 13.724
	 Check	 —	 13 59 57.98	 +17 56 48.0	 13.777	 14.92

aperture size was adjusted to match between 3 to 4 times the 
full width at half maximum (FWHM) of the brightest object on 
which photometry was performed for a given target. Similarly, 
the inner sky annulus was adjusted to about 5 times the FWHM. 
We searched for any comparison stars from the Tycho (Høg et al. 
2000) and the American Association of Variable Star Observers 
(AAVSO) Photometric All-Sky Survey (APASS; Henden et al. 
2016) catalogues that are present in the image frame, and used 
these stars to determine the B and V magnitudes of each of the 
targets (Table 2). Instrumental magnitudes were used for the 
R-filter since the R magnitudes for comparison and check stars 
were not listed. Stars of brightness comparable to the target star 
were chosen as check stars. We inspected and confirmed that 
the check and comparison stars show no variability in each of 
the filters for both objects. The error on a single observation in 
each of the filters was approximately 2 mmag for both objects.

3. Analysis and results

3.1. Light curves
	 To plot a light curve, the time axis is phase-folded using 
the equation

	 T – T0	 T – T0	 Φ = ———  –  Int  ———	 (1)	 P	 P

where T is the time, P is the period of the object, and T0 is an 
arbitrary epoch. The resulting light curves for each object in the 
B and V filters are shown in Figure 1. Only the B and V plots 
are shown since we could not identify a star with a reliable R 
magnitude in the image field. We calculate and set the epoch 
of the primary minimum, defined as the deeper of the two 
eclipses, as phase “0”. This is achieved by setting the epoch, T0 
in Equation 1 to the epoch of the primary minimum.
	 In the B and V light curves, we see that the two systems have 
similar but slightly different depths of minima. The light curves 
for both objects are smoothly varying with comparable primary 
and secondary minima characteristic of W UMa systems. 
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A modest O’Connell effect is seen as well, with the secondary 
maxima (the maxima following the secondary eclipse) slightly 
higher than the primary maxima. This effect is even more 
prominent when the normalized flux is plotted, instead of the 
magnitude (see Figure 2). For each data point, the normalized 
flux (Warner and Harris 2006) is calculated from the magnitude 
by applying the equation

I (Φ)obs = 10–0.4 × (m(Φ) – m(max))                      (2)

where m(Φ) is the magnitude at a certain phase Φ and m(max) 
is the maximum magnitude observed for the object. We perform 
Fourier fit analyses on the light curves of each object in each 
filter similar to Wilsey and Beaky (2009). A truncated twelve-
term Fourier fit is given by

where a0, an, and bn are the Fourier coefficients of the fit, and 
Φ is the phase (Hoffman et al. 2009). Note that the Fourier fits 
are generated after the data are adjusted to align the primary 
eclipse with phase “0”. The light curves of the two objects in 
each filter along with their Fourier fits are presented in Figure 2.
	 We use the phased normalized flux plots (Figure 2) and the 
corresponding Fourier fits to classify the two systems, and then 
proceed to discuss the asymmetries in the light curve.

3.2. Classification of systems
	 In this paper, we apply the following criteria to classify the 
systems:

1. Distinguish the systems as either W UMa or β-Lyrae, or 
detached Algol type systems utilizing Rucinski’s (1997) 
criterion:

  (a) if a4 > a2 (0.125 – a2) then the system can be considered 
a W UMa or a β-Lyrae system.

	 (b) if a4 < a2 (0.125 – a2) then the system may be considered 
a detached eclipsing binary or an Algol.

  Note that both coefficients a2 and a4 are negative.

2. If condition (a) above is met, use the Fourier coefficient a1 to 
distinguish between a W UMa or β-Lyrae system as follows 
Wilsey and Beaky (2009):

  (a) if |a1| < 0.05 the system is classified as a W UMa type

  (b) if |a1| > 0.05 the system is of the β-Lyrae type.

Rucinski (1973, 1993, 1997) provides an excellent overview 
of the use of the Fourier coefficients in determining the orbital 
elements of eclipsing binary stars. As discussed in Gardner et al. 
(2015), a2 is a measure of the global distortion of the contact 
structure, whilst a4 represents the more localized eclipse effects. 
On the other hand, the first cosine term from the Fourier fit 
(a1) is the dominant term contributing to the difference in the 
primary and secondary eclipse magnitudes (Wilsey and Beaky 
2009). Hence, the first cosine coefficient a1 provides a measure 

Figure 1. Light curves for KID 11405559 (upper plot) and V342 Boo (lower 
plot) in the B and V filters (blue and green, respectively). Note the depth of the 
primary and secondary minima is comparable—a distinctive characteristic of W 
UMa type systems. The average error on each measurement for both objects in 
each filter is 0.002 magnitude. Error bars are not shown for the sake of clarity.

Figure 2. Normalized flux for KID 11405559 (upper plot) and V342 Boo (lower 
plot). The Fourier fits (continuous curves) are plotted along with the blue, green, 
and red curves corresponding to B, V, and R filters, respectively. The average 
error in the flux for each measurement for both objects in each filter is 0.001. 
Error bars are not shown for the sake of clarity.

	 I(Φ)fit = a0 +    (an cos(2πnΦ) + bn sin(2πnΦ))    (3)
12

∑
n = 1
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of the magnitude difference of the two eclipses and is given 
by –2a1. We experimented with our Fourier fit coefficients to 
determine that if the depth of the primary and secondary minima 
are exactly equal, then a1 is identically zero. With increasing 
a1, the difference between the magnitudes of the two eclipses 
becomes more prominent, which can be used to distinguish a
W UMa system from a β-Lyrae system. When criterion (1a) 
above is clearly satisfied, and when |a1| ≈ 0.05, the depths of 
the minima differ by approximately 10%, which we take as the 
dividing line between a W UMa and a β-Lyrae type system.
	 We evaluated these relationships for each of our objects 
and the results are recorded in Table 3. The uncertainties of the 
Fourier coefficients are determined using the NonlinearModelFit 
function (Wolfram Res. Co. 2019) on mathematica, where each 
data point was weighted by the square of its signal-to-noise ratio 
(SNR).

3.3. Asymmetries in the light curve: quantifying the 
  O’Connell Effect
	 The simplest way to quantify the O’Connell effect is to 
calculate the difference in the normalized flux near the primary 
(Ip) and secondary (Is) maxima:

ΔI ≡ Ip – Is

A positive ΔI implies that the peak after the primary eclipse is 
brighter than the peak after the secondary eclipse. A negative 
ΔI implies the opposite.
	 We calculate ΔI in two ways:

1. Firstly, we found the values of the two peak magnitudes of the 
Fourier fit functions. The difference between the two maxima 
gives us a measure of the the O’Connell effect. These values 
are presented in Table 4 as “ΔI (Fourier).”

ΔIfit = Ipfit – Isfit                  (4)

2. Secondly, all of the data points within ± 0.05 phase of each 
maximum are averaged. The difference between the two 
average values for the maxima is calculated, yielding another 
measure of ΔI. These values are recorded in Table 4 as “ΔI 
(Average).”

	 ΔIAve = ‹Ip› – ‹Is›	 (5)

In both systems, and in all filters, both methods result in a 
negative ΔI (Table 4), which is consistent with Figure 2.

	 The first sine term in the Fourier series has extrema 
at phase Φ = 0.25 and Φ = 0.75, the locations of the out-
of-eclipse maxima in the light curves. This makes it the 
dominant component accounting for the asymmetry in the peak 
magnitudes (Wilsey and Beakey 2009, Gardner et al. 2015). 
The coefficient, b1, associated with the first sine term is the 
half-amplitude of the sine wave and consequently, |2b1| is a good 
approximation to ΔI. The calculated values of |2b1|, ΔI (Fourier) 
and ΔI (Average) are shown in Table 4. The uncertainties for 
|2b1| and ΔIfit are calculated by propagating the uncertainties 
on the Fourier coefficients (See Appendices B and C). Note 
that the uncertainty on ΔIAve is calculated from the addition of 
uncertainties in quadrature of the data points used in the average 
(Appendix C), and consequently is a function of the signal-to-
noise ratio (i.e. how good our data are) close to the two maxima. 
This leads to significant variation in the errors on ΔIAve.
	 We also quantified the O’Connell effect by calculating 
the O’Connell Effect Ratio (OER) and the “Light Curve 
Asymmetry” (LCA) as described by McCartney (1999). As 
mentioned, The OER is simply the ratio of the area under the 
curves between phases Φ = 0.0 to Φ = 0.5 and phases Φ = 0.5 to 
Φ = 1.0, whilst the LCA measures the deviance from symmetry 
of the two halves of the light curve. The OER and LCA are given 
by:

	 ∫0.0

0.5 (I(Φ)fit – I(Φ)fit)dΦ
	 OER = ——————————	 (6)
	 ∫0.5

1.0 (I(Φ)fit – I(Φ)fit)dΦ

And 

where, I(Φ)fit is given by Equation 3. The values for these 
parameters are tabulated in Table 5. The uncertainties of the 

Table 3. Classification of systems based on Fourier coefficients.

	 Target	 Filter	 a1	 a2	 a4	 a2(0.125 – a2)	 Classification

	 KID 11405559	 B	 0.015 ± 0.001	 –0.218 ± 0.001	 –0.0426 ± 0.0011	 –0.0748 ± 0.0005	 W UMa
		  V	 0.0172 ± 0.0005	 –0.2075 ± 0.0005	 –0.0445 ± 0.0006	 –0.0690 ± 0.0002	 W UMa
		  R	 0.0152 ± 0.0007	 –0.2009 ± 0.0008	 –0.0426 ± 0.0008	 –0.0655 ± 0.0003	 W UMa

	 V342 Boo	 B	 0.0383 ± 0.0007	 –0.2490 ± 0.0008	 –0.0589 ± 0.0007	 –0.0931 ± 0.0003	 W UMa
		  V	 0.0375 ± 0.0007	 –0.2436 ± 0.0008	 –0.0608 ± 0.0008	 –0.0898 ± 0.0004	 W UMa
		  R	 0.0341 ± 0.0007	 –0.2399 ± 0.0007	 –0.0604 ± 0.0007	 –0.0875 ± 0.0003	 W UMa

Table 4. Quantifying the O’Connell Effect in terms of difference in maxima. 
Please see the text (section 3.3) for details.

	 Target	 Filter	 |2b1|	 ΔI (Fourier)	 ΔI (Average)

	 KID 11405559	 B	 0.032 ± 0.003	 -0.024 ± 0.008	 -0.029 ± 0.002
		  V	 0.031 ± 0.001	 -0.036 ± 0.004	 -0.0321 ± 0.0008
		  R	 0.029 ± 0.002	 -0.031 ± 0.005	 -0.035 ± 0.002

	 V342 Boo	 B	 0.041 ± 0.002	 -0.044 ± 0.005	 -0.045 ± 0.002
		  V	 0.040 ± 0.002	 -0.044 ± 0.006	 -0.040 ± 0.005
		  R	 0.036 ± 0.002	 -0.038 ± 0.005	 -0.0373 ± 0.0007

	 LCA = 	 ∫0.0

0.5
 (I(Φ)fit – I(1.0 – Φ)fit)

2

	
————————— dΦ

	
(7) 

	
I(Φ)2

fit√ (7)
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OER and LCA are calculated by first defining an “uncertainty 
function” for each of the integrands (see Appendix B) following 
the calculus approach of error propogation presented in Hughes 
and Hase (2010). From this, we obtain the uncertainty of each 
integrand as a function of phase, which we then integrate to 
compute the uncertainties of the OER and LCA (Appendices 
D and E).
	 Finally, we superpose the two halves of the phase-folded 
light curves to provide a visual demonstration of the asymmetries 
in the light curves. We calculate

ΔI(Φ)fit = I(Φ)fit – I(1 – Φ)fit            (8)

and plot this function against Φ ranging from 0 to 0.5. As an 
example, in Figure 3, we plot ΔI(Φ)fit for the “B” filter for both 
objects under consideration, and show the difference in the 
normalized flux at geometrically equivalent points in the orbit 
of the binary in the bottom panels of each plot. Figure 4 shows 
just the difference in the normalized flux in all three filters for 
KID 11405559 and V342 Boo. We note that for both objects, 
the asymmetry is greatest between the phases 0.15 and 0.25. 
Also, for the most part, the flux under the secondary half of the 
phase is greater than that in the primary half. This is consistent 
with a negative value forΔI and for an OER < 1, as discussed 
previously. Note also that the magnitude of the asymmetry is 
marginally greater in V342 Boo than in KID 11405559.

4. Discussion

	 We have quantified the asymmetries in the light curves 
of the two objects under consideration: KID 11405559 and 
V342 Boo. Both systems exhibit a small O’Connell effect, 
with the asymmetry being the greatest around a phase of about 
0.2 (or 0.8). In both systems, ΔI is negative and the OER < 
1, which implies that the secondary half of the light curve is 
brighter than the primary half. It is reasonable to assume that 
the magnitude and the location of this asymmetry is related, 
within the starspot model, to the location and characteristics of 
the starspots on one or the other component of the binary. For a 
single light curve, phase-folded over one or two orbital cycles 
of a binary, this information may not be of much consequence. 
But for EBs in the Kepler and TESS field, where data for several 
hundred if not several thousand orbital periods are available, 
this information can prove invaluable in setting constraints or 
in overruling the starspot model, even without having access to 
spectroscopic data. For example, we are in the process (Koogler 
et al. in preparation) of analyzing the light curves of several 

Table 5. Quantifying the O’Connell Effect in terms of OER and LCA. Please 
see text (section 3.3) for the definitions of the OER and LCA.

	 Target	 Filter	 OER	 LCA

	 KID 11405559	 B	 0.94 ± 0.02	 0.020 ± 0.004
		  V	 0.94 ± 0.01	 0.019 ± 0.002
		  R	 0.94 ± 0.02	 0.018 ± 0.003

	 V342 Boo	 B	 0.93 ± 0.01	 0.027 ± 0.003
		  V	 0.93 ± 0.02	 0.025 ± 0.004
		  R	 0.94 ± 0.01	 0.022 ± 0.003

Figure 3. Superposed phased plots of the primary half (dashed line) and the 
secondary half (dotted line) of the light curves in the B filter for KID 11405559 
(upper plot) and V342 Boo (lower plot). The bottom panel (solid blue) shows 
the difference between the two halves of the light curve. In the absence of any 
asymmetry, the two curves should coincide, and the solid blue curve in the 
bottom panel would be a flat line at ‘0’.

Figure 4. Difference in normalized flux in the B (blue solid curve), V (green 
dashed), and R (red dotted) filters for KID 11405559 (upper plot) and V342 Boo 
(lower plot).
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hundred EB systems, for which we can analyze hundreds, if not 
thousands, of consecutive orbits using Kepler data. This gives 
us information on how the various asymmetry parameters like 
the OER, LCA, and ΔI evolve in time for hundreds of objects 
over thousands of orbital cycles. We plan on generating starspot 
models for a given orbital cycle and propagating this model to 
fit subsequent orbits in order to test the starspot model. This 
should enable us to derive constraints on the size, temperature, 
and lifetimes of the starspots.
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Appendix A: Obtaining uncertainties on the Fourier 
  coefficients

	 The uncertainty on each data point is computed as the 
reciprocal of the signal-to-noise ratio (SNR). Those uncertainties 
in magnitude are converted into uncertainties in the normalized 
flux using the formula:

I (Φ)obs = 10–0.4 × (m(Φ) – m(max)) ,                      (A1)

where appropriate.
	 Using a twelve-term truncated Fourier fit, we use 
mathematica’s NonlinearModelFit function to run a weighted 
least squares calculation on our data, weighing each data point 
by the reciprocal of its uncertainty squared. mathematica outputs 
the best estimate, standard error, t-statistic, and p-value for 
each of the 25 Fourier coefficients. We use the standard error 
of each Fourier coefficient as its uncertainty in the rest of our 
uncertainty calculations.

Appendix B: Uncertainty propagation on the Fourier series

	 The uncertainty δf for a general function f = f (x,y, . . . ) is 
given by:

where δx is the uncertainty on x, δy is the uncertainty on y, 
and so on (Hughes and Hase 2010). Using this, we generate an 
“uncertainty function” which gives us the uncertainty of the 
normalized flux as a function of phase.
	 Now, the Fourier series is given by:

And so,

	 ∂L	 ∂L	 ∂L	 —— = 1,	 —— = ai cos(2πiΦ) + and,	 —— = sin(2πiΦ)	 ∂a0	 ∂ai	 ∂bi

Therefore, using Equation B1, the uncertainty on the normalized 
flux at each phase is given by:

We refer to Equation B2 as the “uncertainty function” in 
section 3.3.

Appendix C: Uncertainty propagation for ΔI

	 We calculate ΔI (Fourier) and ΔI (Average) using Equations 
4 and 5 (Table 4). ΔI (Fourier) is calculated from the difference 
in normalized flux between the two maxima from our Fourier 
fit. We denote the two phases of maxima (one after the primary 
eclipse and the other after the secondary eclipse) as Φp and Φs, 
respectively. We calculate the uncertainty of ΔI (Fourier) by 
adding δI (Φp) and δI (Φs) in quadrature, as follows:

δ (ΔIfit) =  [δI(Φp)]
2 + [δI(Φs)]

2                  (C1)

where δI (Φp) and δI (Φs) are calculated by using Equation B2.
	 In order to calculate ΔI (Average), we average data points 
within ± 0.05 phase of each maxima and then take the difference 
between the two maxima. The uncertainty on each average is 
calculated by adding the uncertainties of data points used in 
quadrature and dividing that by the number of data points:

with a similar expression for δI (Φs).
	 The uncertainty on ΔI (Average) then, is given by adding 
these uncertainties of the averages in quadrature:

Appendix D: Error propagation for the O’Connell Effect 
  Ratio (OER)

	 The OER is given by Equation 6:

	 ∫0.0

0.5 (I(Φ)fit – I(Φ)fit)dΦ
	 OER = ——————————	
	 ∫0.5

1.0 (I(Φ)fit – I(Φ)fit)dΦ

From Equation B2,

And adding δI (Φ) and δI (0.0) in quadrature,

	 In order to evaluate the errors on the integrals involved in 
calculating the OER, we make the following approximations:

δ∫0.0

0.5 [I(Φ) – I(0.0)]dΦ ≈ δ∫0.0

0.5 [δ(I(Φ) – I(0.0))]dΦ, and

δ∫0.5

1.0 [I(Φ) – I(0.0)]dΦ ≈ δ∫0.5

1.0 [δ(I(Φ) – I(0.0))]dΦ,

and treating δ(I(Φ) – I(0.0)) as a function of Φ, we integrate 
over the appropriate limits to obtain the uncertainty for both 
the numerator and denominator in our expression for the OER.
	 We then evaluate the uncertainty of the OER, quoted in 
Table 5, using:

	 ∂f	
2
	 ∂f	

2

	 δf	 =	 — δ x	 +	 — δ y	 + . . . ,	 (B1)	 ∂x	 ∂y√⎛⎝ ⎛
⎝
⎛
⎝

⎛
⎝

I(Φ) =  a0 +      ai cos(2πiΦ) +    bi sin(2πiΦ)∑
 i

∑
 i

δI(Φ) =  (δa0)
2 +      [δai cos(2πiΦ]2 +   [δbi sin(2πnΦ)]2  (B2)∑

 i
∑
 i√

	 (δx1)
2 + (δx2)

2 + ··· + (δxn)
2 

	 δ(‹Ip›) = √ ——————————————
	 n

δI(Φ) =  (δa0)
2 +      [δai cos(2πiΦ]2 +   [δbi sin(2πnΦ)]2  (B2)∑

 i
∑
 i√

	 δ(I(Φ) – I(0.0) = √ [δI(Φ)]2 + [δI(0.0)]2   =

√ [2(δa0)
2 +  [δai]

2 +  [δaicos(2πiΦ)]2 +  [δbisin(2πiΦ)]2∑
 i

∑
 i

∑
 i

	δ(OER)	———	=	 ————————–	 +	 ————————–
	 OER

δ∫0.0

0.5 [I(Φ) – I(0.0)]dΦ

∫0.0

0.5 [I(Φ) – I(0.0)]dΦ

δ∫0.5

1.0 [I(Φ) – I(0.0)]dΦ

∫0.5

1.0 [I(Φ) – I(0.0)]dΦ√⎛⎝ ⎛
⎝
⎛
⎝

⎛
⎝

2 2

(D1)

δ (ΔIAve) =  [δ(‹Ip›)]2 + [δ(‹Is›)]2              (C2)
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Appendix E: Error propagation for the Light Curve 
  Asymmetry (LCA)

The LCA is given by Equation 7:

The error analysis of the LCA is a bit more involved. For the 
sake of clarity, let
	 J(Φ)J(Φ) = I(Φ) – I(1.0 – Φ), K(Φ)) = —— and, L(Φ) = [K(Φ)]2

	 I(Φ)

so that L(Φ) is the integrand, and we are interested in calculating 
an expression for δL(Φ).
	 Note that

and since,

cos[2πi(1.0 − Φ)] = cos(2πi − 2 iΦ) = cos(2πiΦ) and,
sin[2πi(1.0 − Φ)] = sin(2πi − 2 iΦ) = −sin(2πiΦ),

we have

Thus,

Now, taking the partial derivatives of L(Φ) with respect to the 
Fourier coefficients, we get

	 ∂L	 —— = 2K(Φ) J(Φ) [– I(Φ)2]	 ∂a0
	 = –2K(Φ) J(Φ) I(Φ)2 .	 (E1)

	 ∂L	 —— = 2K(Φ) J(Φ) [– I(Φ)2] cos(2πiΦ)	 ∂ai
	 = –2K(Φ) J(Φ) I(Φ)2 cos(2πiΦ), and	 (E2)

And so as before (Hughes and Hase 2010),

where each of the partial derivatives are given by Equations 
E1, E2, and E3. 
	 Using the same approximation as before, we have:

δ∫0.0

0.5 L(Φ)dΦ ≈ δ∫0.0

0.5 δL(Φ)dΦ,

We integrate δ L (Φ) over the appropriate limits. We then 
calculate the uncertainty of the LCA, quoted in Table 5, using:

	 LCA = 	 ∫0.0

0.5
 (I(Φ)fit – I(1.0 – Φ)fit)

2

	
————————— dΦ

	
(7) 

	
I(Φ)2

fit√

I(1.0 – Φ) = a0 +    ai cos[2πi(1.0 – Φ)] +    bi sin[2πi(1.0 – Φ)].∑
 i

∑
 i

I(1.0 – Φ) = a0 +    ai cos(2πiΦ) –    bi sin(2πiΦ).∑
 i

∑
 i

	 J(Φ) = I(Φ) – I(1.0 – Φ) =

	 =  [a0 +    ai cos(2πiΦ) +    bi sin(2πiΦ)]

	 – [a0 +    ai cos(2πiΦ) +    bi sin(2πiΦ)]
	 = 2    bi sin(2πiΦ).

∑
 i

∑
 i

∑
 i

∑
 i

∑
 i

	 ∂L	 2 sin (2πiΦ) – J(Φ) sin (2πiΦ)	 ——	 =	 2K(Φ)	 —————————————	 ∂bi	 I(Φ)2
⎡
⎣

⎡
⎣

		  2K(Φ) [2I (Φ) – J(Φ)] sin (2πiΦ)	 =	 —————————————— .	 (E3)	 	 I(Φ)2

	 ∂L	
2
	 ∂L	

2
	 ∂L	

2

	δL(Φ)	 =	 —— δa0	 +	 —— δai	 +	 —— δbi	 (E4)	 ∂a0	 i	 ∂ai	 ∂bi√⎛⎝ ⎛
⎝

⎛
⎝

⎛
⎝

∑ ⎛
⎝

⎛
⎝

	 δ (LCA)	 1	 ———	 =	 —	 ——————	 LCA	 2
δ ∫0.0

0.5 L(Φ) dΦ

∫0.0

0.5 L(Φ) dΦ

⎡
⎣

⎡
⎣

		  1		  ≈	 —	 ——————	 	 2
δ ∫0.0

0.5 L(Φ) dΦ

∫0.0

0.5 L(Φ) dΦ

⎡
⎣

⎡
⎣

(E5)


