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Abstract  We use methods of singular spectrum analysis to examine the observed minus expected times of minimum of five 
Algol-type binaries looking for significant periodicities. All the stars examined show long “waves” of 20 to 50 years but only 
XZ And and RZ Cas appear to have significant periodicities. 

1. Introduction

	 In this paper we examine the Algol-type variables listed 
in Table 1 with physical data in Table 2. It is common to 
attempt to explain secular changes in times of minimum (of 
the eclipse) in terms of harmonics caused by third bodies in 
the system, for example Borkovits and Hegedus (1996), or 
additionally apsidal motion, Hoffman et al. (2006). A study by 
Li et al. (2018) of 542 short-period binaries showed that many 
such stars do indeed show the presence of third bodies. Other 
causes of periodicity (not necessarily harmonic) are interactions 
between electromagnetic fields (Hall 1989) or electromagnetic-
gravitational interactions (Applegate 1992). A general review 
of Algol variables is given in Budding (1986) and references 
therein, and a table of such stars in Budding et al. (2004).
	 Our objective here is to determine if there are oscillations 
in the observed minus calculated (O–C) times of minimum with 
“periods” (i.e. non-secular changes) in ranges determined by 
the available length and density of data but broadly speaking in 
the range of a few years to 20 years—rather than the long-term 
variation, and without any presumption as to the cause of such 
variation. The upper limit of 20 years is driven by the desire to 
see a minimum of at least 6 or so complete periods in order to 
be confident of their real nature, and the lower period by the 
bucketing (binning) size chosen which in turn is driven by the 
density of data.
	 XZ And  Demicran et al. (1995) examined the O–C history 
and postulated two or three other bodies with periods 137.5, 
36.8, and 11.2 years as a possible cause of the variation, 
although they suggested the third period may be related to cyclic 
magnetic activity of the secondary star. Borkovits and Hegedus 
(1996) could not find a good fit for any third body orbit. 

Manzoori (2016) quote periods of 34.8 ± 2.4 years and 23.3 ± 
3.0 years.
	 RZ Cas  This star’s variability was discovered by Muller 
in 1906. The light-curve sometimes shows a flat bottom near 
primary minimum, which may be caused by the effect of 
short-term δ-Scuti type variability (Rodriguez et al. 2004) or 
hot and cool spots on the surface of the primary (Olson 1982). 
Ohshima et al. (2001) and Rodriguez et al. (2004) found very 
short-term periodicity of around 22 minutes. Mkrtichian et al. 
(2018) also confirmed the high frequency variability and in 
addition, based on a 1999–2009 data sample, a 6- to 9-year 
magnetically induced variation in times of minimum. Using 
a statistical analysis of times of minimum, Chaplin (2018) 
postulated a period of 22.5 to 24 years.
	 U Cep  Ceraski (1880) first determined U Cep to be a 
variable binary star with a period of 2.49 days. It is amongst 
the most active Algols, and it is known to cycle through 
periods of extremely active mass exchange and times of 
relative quiescence and was found to exhibit a 9 ± 4 yr cycle 
of relative quiescence and high activity (Hall 1975) with period 
changes related to mass loss and non-conservation of angular 
momentum.
	 TW Dra  This star forms a visual triple with ADS 9706, 
complicating both amateur and professional observations. Zejda 
et al. (2008) quote cycles of approximately 20 years caused by 
electromagnetic-gravitational interaction and 6.5 years caused 
by a third body.
	 U Sge  Manzoori and Gozaliasl (2007) used polynomial 
fitting and Fourier analysis of times of minimum to conclude 
there were cyclic variations of lengths 15.8 and 9.5 years, 
whereas Simon (1997) reports a roughly defined period of 
39 years.

Table 1. Stars analyzed.

	 Name	 GSC	 R.A. (J2000)	 Dec. (J2000)1	 Data History	 Period2

	 (HD)	 h	 m	 s	 °	 '	 "	 Start	 (days)

	 XZ And	 02824-01360	 01 53 48.76	 +41 51 24.97	 1891	 1.35730911
	 RZ Cas	 04317-01793	 02 48 55.51	 +69 38 03.44	 1901	 1.19525031
	 U Cep	 04505-00519	 01 02 18.44	 +81 52 32.08	 1880	 2.4930911
	 TW Dra	 (139319A)	 15 33 51.06	 +63 54 25.67	 1898	 2.80684701
	 U Sge	 01607-00913	 19 18 48.41	 +19 36 37.72	 1901	 3.380619331

1 Wenger et al. (2000). 2 Frank and Lichtenknecker (1987).
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2. Methodology

2.1. Data
	 Data in the form of times of minimum (Tmin) are taken from 
the Lichtenknecker database (Frank and Lichtenknecker 1987), 
augmented in the case of RZ Cas by data from Mkrtichian et al. 
(2018). Data and the period (possibly after minor adjustment) 
are used to calculate observed minus expected (O–C) differences 
in times of minimum (expressed in days).

2.2. Data cleaning and weighting
	 Initial relatively isolated observations are ignored together 
with early very noisy data if any, and analysis is performed 
on the entire data series (visual and electronically based 
observations). Where more recent data include a long run of 
high quality observations (by electric photometer or CCD) we 
perform the analysis additionally using only the electronically 
based data.
	 It is to be noted that the accuracy of Tmin is the result 
of the combination of the accuracy of individual magnitude 
estimates and the number of such estimates (as well as a good 
analytical method to reduce these to a Tmin). In principle 
many unbiased visual observations can be as accurate as a 
small number of highly accurate CCD observations although 
in practice electronic data are far better; further theoretical 
discussion and analysis is given in Chaplin et al. (2018). 
While accuracy estimates are given for recent CCD results 
such explicit estimates are generally not available for other 
observation methods.
	 Various weighting (or unweighted) regimes were tested with 
relatively minor variation in results. In this paper we analyze 
using two regimes: weights according to the observational 
type: 10 (CCD), 3.25 (electric and wedge photometer), or 
1 (others) (“fixed” weights), or weighted, by 1/observational-
error squared (“inverse error” weighting). Observational error 
(for Tmin in days) is taken as given by Mkrtichian et al. (2018) 
(applicable to RZ Cas only), 0.0004 for other CCD data, 0.0004 
for photometric data, 0.01 for a series of photographic data, and 
0.02 for others (primarily visual). For the CCD data the error is 
a conservative estimate based on Samolyk (2011 and others), for 
photometric data it is based on a comparison of scatter compared 
to CCD, and for visual it is derived by assuming 0.1 accuracy 
in magnitude estimates and between 10 and 20 observations in 
the series—based on Chaplin et al. (2018)). Outlier rejection is 
performed by repeated local polynomial fitting rejecting outliers 
at the 4-sigma level.

2.3. Bucketing (binning)
	 SSA techniques require data at equally spaced time points 
whereas observations of Tmin are unevenly spaced. We use two 
alternative methods to obtain the required spacing after defining 
a bucket size (the time span—150-, 200-, 300-, and 500-day 
buckets were used). The first method (“date buckets”) takes the 
(weighted) average of data within that interval, filling empty 
buckets by linear interpolation; the second method (“local poly 
buckets”) fits a local polynomial and takes values from the 
fitted curve at evenly spaced time intervals. In the case of date 
bucketing a small bucket size means more empty buckets; where 
the percentage of empty buckets exceeds about one quarter the 
results of the analysis are ignored as unlikely to be reliable.
	 It should be noted that the bucketing process necessarily 
imposes a limit on the shortest periods that can be reliably 
detected. For example, with a binning of 500 days periods 
shorter than this are unlikely to make their presence known in 
the analysis (although it is theoretically possible if the period 
and bucketing interval are not simple multiples of each other) 
and detected periods are likely to be longer than a multiple of 
the bucketing interval.

2.4. SSA
	 We use techniques of Singular Spectrum Analysis (“SSA”) 
as explained in detail by Chaplin (2018, 2019 and references 
therein) and implementations in the r language (R Found. 
2018a), CRAN libraries (R Found. 2018b), using RStudio 
(2018) and in particular the “Rssa,” and “simsalabim” (for 
significance testing, Gudmundsson 2017) libraries.
	 By way of background SSA can be thought of as a means 
of calculating averages (called EV series) from a data series—
rather like (but much more complicated than) moving averages. 
These averages have certain properties in common with Fourier 
series—orthogonality between different series—although 
the EV series are generally neither periodic nor of constant 
amplitude. The R language primarily gives access to an 
extensive library of statistical, mathematical, graphical, and 
other routines, while RStudio provides an interface to the code, 
written output, all variable values, graphical output, libraries and 
help files, and more. Both are free and available for Windows, 
Mac and a range of Linux systems. Outline code for the analysis 
is given in Appendix A.
	 The EV series derived from the SSA analysis are ordered 
according to the magnitude of the associated eigen value 
(equivalent to ordering by the strength of the series in the total 
data), and we refer to them as series 1, 2, 3, etc.

Table 2. Stars’ physical data, and sources.

	 Star	 Spectral Type	 Masses (solar)	 Radii	 Source
			   (primary, secondary)	 (solar)

	 XZ And	 A4IV-V, G5IV	 3.2, 1.3	 2.4, 2.6	 Demircan et al. (1995)
	 RZ Cas	 A3V1,  carbon2 or K01V3	 2.2, 0.7	 1.7, 1.9	 Maxted et al. (1994)
	 U Cep	 B 7/8 V,  G 5/8 III–IV4	 4.2, 2.8	 2.8, 4.9	 Batten (1974), Singh et al. (1995)
	 TW Dra	 A5 V, K0 III	 2.2, 0.9	 2.6 (primary)	 Tkachenko et al. (2010)
	 U Sge	 B7III, K1III C	 5.7, 1.9	 4.2, 5.3	 Dobias and Plavec (1985)

1 Duerbeck and Hänel (1979). 2 Abt and Morrell (1995). 3 Maxted et al. (1994). Rodriguez et al. (2004). 4 Tupa et al. (2013).
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	 The given orbital period is adjusted to give a best fit 
horizontal line to the O–C data. “Sequential SSA” is performed 
on the bucketed data to determine the trend in the signal, and 
removing this trend from the O–C data gives the residuals. 
Trends are defined as EV series which have no identified 
periodicity. The residuals are then analyzed using SSA again and 
the reconstructed signals are calculated after grouping residuals 
according to similarity of pattern and having high correlation. 
Periodicities of the reconstructed signals are then determined. 
Only signals which appear under a variety of bucketing time 
intervals and regimes (“consistency”) are considered and tested 
for significance.
	 The length of the data series determines the longest period 
we can reasonable expect to be confident in identifying—our 
rule of thumb is 6 or more periods in the time series (so 20 years 
for a 120-year data series). The shortest period is determined 
by the density of data and how short a bucket size we can take 
without empty buckets exceeding around 25% of the total. With, 
for example, a 150-day bucket interval, periods of around 3 years 
or longer should be apparent from the analysis of the data. 
	 SSA is a “data driven” method of analysis to be contrasted 
with a “model driven” approach where (as in Hoffman et al. 
2006), for example, a parabola or sinusoid might be used 
to remove the trend component of the change in O–C. The 
strength of the argument for using one method rather than 
the other depends on the evidence from other observations. 
If, again for example, a distant companion star is observed, 
then the calculated orbital period can be used to determine the 
sinusoidal change (light time effect) in the O–C that its orbit 
will cause, and this can be used to remove (a component of) the 
trend. The argument for favoring the data-driven approach is 
stronger when no such external evidence in favor of a specific 
long-term change is known. Results regarding any discovered 
shorter period signals are to some extent dependent of what 
trend signal has been removed—in other words a model for 
the trend may lead to different shorter period signals being 
discovered compared to the purely data-driven approach.

2.5. Significance testing
	 We use the MCSSA routine from the simsalabim library as 
a tool to assign a level of significance to the results. Anything 
below a 95% confidence level is rejected. However, in stating 
that a result is significant we qualitatively take into account 
more factors than a single test number—the number of periods 
observed in the data, changes in amplitude of the signal, etc.

3. O–C charts and data types

	 Table 3 shows the symbols are used consistently in the O–C 
charts plotting raw data to identify different equipment used to 
make the observation leading to the Tmin calculation.

3.1. XZ And
	 After rejecting 18 outliers, a total of 1,086 times of minimum 
from year 1891 on are displayed in Figure 1. Analysis using an 
adjusted period of 1.357283 days showed a trend from signals 1, 
2, and 5 across all bucketing and weighting regimes, illustrated 
in Figure 2.

	 Residuals showed a clear and consistent pattern across 
bucketing and weighting regimes with signals 1 and 2 being 
responsible for over 90% of the residual, giving rise to a period 
of approximately 38 years (36–40 years) and are shown in 
Figure 3. MCSSA testing showed the signal as better than 99% 
significant. An apparent period of approximately 23 years from 
signals 3 and 4 is both weak and largely present only when 
visual observations dominate the data, and does not show as 
significant.
	 Figure 4 shows the raw data minus trend value and we note 
the latest CCD data present a different pattern and indicate a 
significantly smaller magnitude of variation, casting doubt on 
possible interpretation as a (single) third body effect. There 
are indications that earlier turning points also showed more 
complicated behavior.

3.2. RZ Cas
	 In total, 4,930 observations were used, and bucketing into 
150-day or longer intervals had less than 15% empty buckets 
with only one empty bucket at 300- and 500-day bucketing. 
Figure 5 shows the data after rejecting 46 outliers at the 4 
standard deviation level.
	 Consistently across all bucketing intervals (data or 
polynomial buckets) and weighting regimes, the first two 
signals describe the trend pattern, and after adjusting the period 
to 1.1952500 days Figure 6 shows the 500-day bucketed data 
and the trend from the first two signals.
	 Decomposition of the residual is again the same for all 
bucketing periods and data weighting methods—the first two 
series constitute the signal with a period of 22.7 to 25 years, 
which is significant to better than 99%. Weaker signals are 
present in higher series and show (near) harmonics at 11.5 and 
5.5 years although they are not significant. The reconstituted 
series from these two signals together with the residuals is 
shown in Figure 7 using 500-day bucketing.
	 CCD and electric photometer data amount to 377 
observations after removing two outliers, and are shown in 
Figure 8.
	 After period adjustment (to 1.1952500 days again) and 
removal of the trend (from the first two EV series) signal 
decomposition of the residual series reveals no surprises; 
decomposition is very similar across different bucketing 
intervals and repeats signals at the same periods as found from 
the long-term analysis. The dominant signal remains the 24-year 
period and Figure 9 shows the 200-day bucketed data and the 
primary signal. The signal remains significant at better than 98%. 
	 We note that the long-term variation shown in Figure 7 is of 
the order of 0.05 day, whereas the variation relative to the long-
term trend is of the order of 0.01 day while the accuracy of the 

Table 3. O–C charts and data types.

	 Symbol	 Data Type

	 Cross	 Visual observation
	 Tilted cross	 Photographic observation
	 Diamond	 Electric photometer
	 Square	 CCD (amateur)
	 Filled dots	 CCD (Mkrtichian et al. (2018), RZ Cas only)
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Figure 1. XZ And, O–C data (deviation in days against Julian Date). See Table 3 
for key to the symbols.

Figure 2. XZ And, 300-day bucketed data and fitted trend (O–C against bucket 
number).

Figure 3. XZ And, residual data and reconstructed signal.

Figure 4. XZ And, raw data minus trend.

Figure 5. RZ Cas, O–C data (deviation in days against Julian Date).

Figure 6. RZ Cas, data after period adjustment with fitted trend signal (O–C 
against bucket number).

Figure 7. RZ Cas, residuals (500-day buckets) and reconstructed signal.

Figure 8. RZ Cas, electronic data (O–C against JD).
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Figure 9. RZ Cas, 200-day bucketed electronic data and long-term trend (O–C 
vs bucket number).

Figure 10. RZ Cas, electronic data minus the trend values.

Figure 11. U Cep, O–C data (deviation in days against Julian Date).

Figure 12. U Cep, residuals and reconstructed signal.

Figure 13. U Cep, 200-day bucketed data and reconstructed signal.

Figure 14. U Cep, electronic data minus the trend values.

Figure 15. TW Dra, O–C data (deviation in days against Julian Date).

Figure 16. TW Dra, residuals and reconstructed signal.
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electronic data is generally much better than 0.001. Figure 10 
shows data minus the trend values. It can be seen that RZ Cas 
regularly shows very short-term changes in period of the order 
of 0.01 day in between 3 and 6 years.

3.3. U Cep
	 1,242 observed minus calculated times of minimum after 
rejecting 37 outliers from 1,880 to 2,018 using a period of P = 
2.493009 are shown in Figure 11.
	 Between 4 and 7 signals constitute trends (period shown 
as infinity), depending on bucketing method and length. After 
calculating residuals the reconstructed signal repeatedly shows 
periodicities of 11.7–12.1 years, 20.5–24 years, with a longer 
period of 40 years occasionally appearing—however, none 
of these appear to be significant. Only at the 500-day interval 
does the signals analysis agree for both bucketing methods 
(and weighting regimes). Figure 12 shows the residuals under 
500-day bucketing with the strongest signal of 40 years from 
EV series 1 and 2.
	 There are 190 electronic (CCD and electric photometer) data 
after removal of 5 outliers. Trend and residual signal analysis 
is clearer and more consistent than with the entire data series, 
although the strongest periodicity in the residual signal is 
identified as 17–19 years and several other signals with periods 
as short as 12 years also appear, but none of these appear to be 
significant. Figure 13 shows the 200-day bucketing residual 
series together with the reconstructed signal from vectors 1 to 4.
	 At 200-day bucketing there are approximately 30% empty 
buckets, while at 500 days there are still 20% empty buckets 
and the data points are much sparser. Although testing indicates 
the period is significant (over 95%) the lack of data with the 
resulting interpolated points, together with the lack of a match 
to results found from the longer data series, indicates not much 
confidence can be placed in this result.
	 Figure 14 shows the data minus the trend values and shows 
the clumping of observations around the middle of the series and 
to a lesser extent at the end. The accuracy of the observations 
is considerably smaller than the range of variation so we can 
conclude that U Cep undergoes irregular changes in period of 
the order of 0.01 to 0.02 day—increasing and decreasing—
taking place within a timespan of the order of 7 years.

3.4. TW Dra
	 After rejecting 10 outliers 534 times of minimum from year 
1901 on were bucketed into 150-day or longer buckets, with at 
best 20% of the buckets being empty using a 500-day bucket. 
The data are shown in Figure 15.
	 Four EV series constituted tends and after adjusting the 
period to 2.806772 days analysis of the residuals showed 
periodicity 36.5–37.5 years (signals 1 and 2 accounting for 
40%), see Figure 16. In addition there is a weak signal of 13 to 
17 years but the amplitude of the signal is far greater during the 
time of visual observations and virtually disappearing during 
the latter interval of electronic observations. Neither of the 
periodicities appears to be significant.
	 Figure 17 shows the deviations of the observations from the 
trend and we see the above trend pattern repeated and period 
changes of the order of 0.04 day occurring over 14 years or so.

Figure 18. U Sge, data after eliminating outliers.

Figure 17. TW Dra, data minus trend.

Figure 19. U Sge, 500-day bucket data and trend.

Figure 20. U Sge, data minus trend.
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3.5. U Sge
	 After rejecting 16 outliers, 480 times of minimum data from 
year 1901 on were analyzed; the data are shown in Figure 18 
using a period of 3.380619 days. The raw data show the 
evidence of changes in the period of the order of 0.03 day—
both increasing and decreasing—taking place over a timespan 
varying in the range of 10 to 25 years, in particular evidenced 
by the recent series of CCD observations. Unlike previous 
examples U Sge does not show a clear secular pattern.
	 Initial analysis presented a confusing picture with 
periodicities of 42 to 68 years occurring but with no regular 
repetition or pattern and, unlike the previous stars, no obvious 
long-term pattern. After including EV signals with periods 
of 40 years or longer with signals having undefined periods, 
Figure 19 using 500-day bucketing shows a wave of roughly 
48 years, but with only just over two such cycles occurring in 
the data series we feel it more appropriate to regard this as a 
trend rather than genuine periodicity.
	 Analysis of the residuals using 500-day bucketing produced 
a dominant signal of 22.5 to 24 years although this was not 
confirmed with shorter bucketing intervals. Periods around half 
this occurred both with 500-day bucketing and with shorter 
bucketing intervals. However, testing showed no significant 
signals. Figure 20 shows the data minus the trend and confirms 
the sharp changes of 0.02 day in 9 years or so.

4. Summary and conclusions

	 It should be born in mind that a data-driven method of 
analysis may produce periodicities different from those which 
would arise if a model-driven approach for removing the trend 
had been used.
	 XZ And  has a secular pattern spanning about 0.02 day 
(change in Tmin) and shows a clear and consistent residual signal 
across the range of bucketing intervals, methods, and weighting 
regimes with a highly significant signal of approximately 
38 years but with much lower amplitude in the recent cycle and 
evidence of more complicated behavior at turning points.
	 RZ Cas  has a secular pattern spanning about 0.06 day 
and shows a fairly clear and consistent residual signal, with a 
significant signal of approximately 24 years repeating 5 cycles 
throughout the data history. Analyzed separately, electronic data 
reveal the same signal. RZ Cas exhibits rapid shifts in Tmin of 
around 0.01 day over periods of 3 to 6 years.
	 U Cep  has a secular pattern spanning about 1.1 days 
does but not show well defined or significant signals of any 
periodicity, although a long wave of 40 years is often revealed 
(as are 12- and 24-year periods) and is visually present in 
Figure 12. Electronic data suggest a different period; they also 
shows changes in Tmin of the order of 0.02 day occurring over 
a period of 7 years or so.
	 TW Dra  has a secular pattern spanning about 1.0 day and 
shows a clear and consistent breakdown of the residual signal 
with a dominant wave of 37 years, although this does not show 
as significant. Electronic data show shifts in Tmin taking place 
over a timespan of 14 years or so.
	 U Sge  exhibits no long-term trend, unlike the other stars 
discussed here, with no clear breakdown of the signals. The 

only period revealed is a long wave of approximately 48 years. 
There is evidence of changes in the period of the order of 0.02 
day taking place over a timespan varying in the range of 9 years 
and longer, in particular evidenced by the recent series of CCD 
observations.
	 All the above stars exhibit long waves from 24 to 48 years 
but with only 2 to 5 cycles appearing in the data history we 
can not feel completely confident that these are stable periods 
despite what statistical significance tests might say. The 
strongest candidates for such stable periods (and which show 
as strongly significant) are XZ And, additionally because of the 
clarity of the signal breakdown and the magnitude of the wave, 
and RZ Cas, with 5 cycles present in the data and the clarity of 
the breakdown of the signal.
	 The value of amateur CCD observations is apparent from 
the analysis of these stars, and continued observations with 
accurate reduction of the results to a time of minimum are 
strongly encouraged for these and other close binaries.
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Appendix A: Outline code for SSA analysis and 
significance testing

	 This code outline shows the steps in the analysis but for a 
single bucketing period, method, and weighting regime, with 
user entering the trend and signal components after viewing the 
relevant SSA analysis output. Comments are in italics

rm(list=ls(all=TRUE))
#Load User-Defined Functions
setwd("D:/Documents/R/GBC defined functions")
source("astro_udf.R")
#load Rssa R library from Install Packages
library(Rssa)
library(simsalabim) # used for MCSSA

# USER INPUT
run = "findTrends" # "check O–C" "findTrends" "findSignals" "final"
star = "TW Dra"
allData = "ALL" # choose ALL or CCD for electronic only
dataMethodForSSA = "bucket" # "localPoly" or "bucket"
weightsMethod = "coded" # "inverseError" or "coded"
ylimRange = c(-0.6,0.7) # "y" range for some charts - initially a guess
periodAdjustment = -0.00008 # sometimes needed because epoch changes, 
try 0 at start
bucketSize = 500 # (days,) for example

# END USER INPUT

# STEP 1: Read in data and calculate OminusC

setwd("D:/Documents/EBdata")
tsIn<-read.csv(paste0(star,".csv"))
# data is named "TW Dra.csv", csv column data with header line as follows
# Tmin,N,period,OminusC,Visual,error
# N is not used; period column not used except first line gives stated period 
and second the epoch
# Visual is a flag as below; error is the data accuracy 
# X Mkrkitchian data (RZ Cas only)
# C CCD
# E electric photometer
# K wedge photometer
# P single density photoplate
# F series of exposures

period = tsIn$period[1]; period = period + periodAdjustment

epoch = tsIn$period[2]
n1 = nrow(tsIn)
tsIn = na.omit(tsIn) # eliminate data rows where NA values exist
cat(paste0(n1-nrow(tsIn)," incomplete data rows eliminated"))
if (allData == "CCD") tsIn = tsIn[(tsIn[,5] == "C ") | (tsIn[,5] == "X ") | (tsIn[,5] 
== "E "),] # for electronic data only
ts = tsIn[-c(1:dropFirstNRows),]
ndata = nrow(ts)

# calculate expected Tmin and OminusC, and plot

expectedTmin = expectedTmin_udf(ts$Tmin,period,epoch) # library code 
calculates expected Tmin
ts$OminusC = ts$Tmin - expectedTmin
ts = cbind(ts,Weights=seq(1,1,length.out=ndata)) # add bad data flag column
if(weightsMethod == "inverseError") ts$Weights=1/ts$error else if 
(weightsMethod == "coded") {
 ts$Weights = ifelse(ts$Visual == "X " | ts$Visual == "C ",10,
 ifelse(ts$Visual == "E " | ts$Visual == "K ",3.25,1))
 }

ts = cbind(ts,badFlag=seq(0,0,length.out=ndata)) # set bad data flag
ts = cbind(ts,bucketNumber=seq(0,0,length.out=ndata)) # add column to say 
which bucket data is
ts <- within(ts,badFlag <- ifelse(!is.na(OminusC),0,1)) # bad flag for missing 
values in OminusC
ts$OminusC[is.na(ts$OminusC)] <- 0 # convert NAs to zero
xAxis = ts$Tmin 
xlimRange = c(min(xAxis),max(xAxis))
# the following chart allows the user to check whether O–C data is based on 
two or more epochs
# user adjusts period to get a continuous set of data
plot(y=ts$OminusC,x=ts$Tmin,xlim=xlimRange,ylim=ylimRange,xlab="",yl
ab="",type="p",col="	 grey20",pch=3, main=paste(star,": O–C raw data"))
if (run == "check O–C") stop()

# STEP 2: do a Local Poly Regression and reject outliers

ndataOld = ndata
if (allData == "CCD") {
 sigLevels = c(4,4,4,4,4,4)
 polySpan = 0.2
} else if (allData == "ALL") {
 sigLevels = c(4,4,4,4)
 polySpan = 0.03
}
ts = badRawDataMethodLP_udf(ts,polySpan,sigLevels,ylimRange) # library 
code eliminates outliers
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ndata = nrow(ts)

# STEP 3: calculate bucketed data and find trends

# STEP 3: bucket data
if (dataMethodForSSA == "localPoly"){
 maxBuckets = floor((ts$Tmin[ndata]-ts$Tmin[1])/bucketSize)
 bucketOmC = seq(0,0,length.out=maxBuckets)
 cat("maxBuckets ",maxBuckets,"\n")
 bucketOmC = localPolyBuckets_udf(ts,bucketSize,maxBuckets,ylimRange,
xlimRange) # library 	code

} else if (dataMethodForSSA == "bucket") {
 tmp = bucketDataAndFlag_udf(bucketSize,ts,drawPlot=FALSE) # library code
 maxBuckets = unlist(tmp[2])
 emptyBuckets = unlist(tmp[3])
 avgFilledBucketCount = unlist(tmp[4])
 bucketOmC = unlist(tmp[1])
 bucketOmC[is.na(bucketOmC)] <- 0
 ts$bucketNumber = unlist(tmp[6])
 flag = unlist(tmp[5])
}

# adjust period so best fit line is horizontal
Tmin <- ts$Tmin
x = c(1:maxBuckets)
fit = lm(bucketOmC~x)
slope = fit$coefficients[["x"]]
newPeriod = period + slope / bucketSize
bucketOmC = bucketOmC - slope * x
mu = mean(bucketOmC)
bucketOmC = bucketOmC - mu
plot(bucketOmC,xlim=c(1,maxBuckets),xlab="", ylab=paste(""), 
type="p",col="black",
 lwd=2, pch=19, main=paste(star,"bucket O–C adjusted period"))

# find trends
L = floor(maxBuckets / 2)
s<-ssa(bucketOmC,L,kind="1d-ssa") #run Rssa
outputVecCount = 10
plot(s,type="vectors",idx=1:outputVecCount,xlim=c(1,L),col="black",lwd=2) 
# vector data plots
plot(w<-wcor(s,groups=c(1:outputVecCount)),title=paste(star,"1d-ssa 
correlation matrix"))
if (run == "findTrends") stop()
trendEV = c(1,2,5) # for example after inspection of the above charts
trend <- reconstruct(s, groups = list(EV = trendEV))

trend = unlist(trend[1])
plot(bucketOmC,xlim=c(1,maxBuckets),xlab="", ylab=paste(""), 
type="p",col="black",
 lwd=1, pch=3, main=paste(star,"bucket O–C and trend"))
lines(xAxis=c(1,maxBuckets),trend,type="l",col="blue",lwd=1,lty=1)

# STEP 4: find signals

residual = bucketOmC - trend
s<-ssa(residual,L,kind="1d-ssa") #run Rssa
outputVecCount = 10
plot(s,type="vectors",idx=1:outputVecCount,xlim=c(1,L),col="black",lwd=2)
plot(w<-wcor(s,groups=c(1:outputVecCount)),title=paste(star,"1d-ssa 
correlation matrix"))
if (run == "findSignals") stop()
 
# STEP 5: get reconstructed signals and frequencies

SSSAsignalEV = c(1:2) # for example after review of the above charts
r2 <- reconstruct(s, groups = list(EV = SSSAsignalEV))
signal = unlist(r2[1])
plot(signal,xlim=c(1,length(signal)) ,xlab="",  ylab=paste(""), 
type="l",col="black",
 lwd=2, main=paste(star,"signal1 SSSA"))
spectrum = spectral_udf(signal,drawPlot=TRUE,paste(star,"signal1 SSSA 
spectrum"),smoothing="ar")
SSSAspecPeaks1 = unlist(spectrum[1])*bucketSize/365.25
spectrum2 = spectral_udf(signal,drawPlot=TRUE,paste(star,"signal1 SSSA 
spectrum"),smoothing="pgram")
plot(residual,xlim=c(1,length(trend)),xlab="bucket", ylab=paste("O–C"), 
type="p",col="black",
 pch=3, main=paste(star,"residual series"))
lines(signal,col="black",lwd=3,lty=1)

# STEP 6: MCSSA analysis

y = MCSSA(s, residual, 1000, conf = 0.99, keepSurr = FALSE, ar.method="mle")
plot(y, by = "freq", normalize = FALSE, asFreq = TRUE,
 lam.pch = 1, lam.col = "black", lam.cex = 1, sig.col = "black",
 sig.pch = 19, sig.cex = 1, conf.col = "darkgray", log = "xy",
 ann = TRUE, legend = TRUE, axes = TRUE)


