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Abstract We use three complete light curves for MU Cancri, a faint W-type W UMa contact binary, to investigate possible 
mechanisms for changes in such binaries’ light curves. The standard Roche model, as implemented by the Wilson-Devinney code, 
does not fit the observations at their level of precision. Most of this discrepancy can be explained by placing one or two moderate 
starspots (rspot ~ 10–12°) on the more massive component. However, this does not resolve the discrepancy, since the solutions for 
the three epochs have different mass ratios, implying unmodelled changes in eclipse depths. This, in turn, implies that more spots 
are changing the depths in unpredictable ways. Thus we are confronted with limits on just how precisely light curve solutions can 
define the physical properties of a contact binary. We use spectra to classify the star (G3–G7) and to measure a spectroscopic mass 
ratio (q = 2.63), significantly closer to 1.0 than the photometric mass ratios (3.0–3.3), but this difference is unlikely to be caused 
by third light. And we also extend the period study of Alton and Stępień.

1. Introduction

 MU Cancri (GSC 01397-01030; TYC 1397-1030-1; NSVS 
10133793; V ≈ 12.1) is a faint contact binary discovered by 
Pepper et al. (2007). It came to our attention when Shanti Priya, 
Sriram, and Vivekananda Rao (2013) published a photometric 
study finding a mass ratio surprisingly large (close to unity) 
for such a star. Consequently, we have obtained complete light 
curves at three epochs in 2014 and 2016, another incomplete 
one in 2019, and spectra for measuring radial velocities in 
2013. In the meantime Alton and Stępień (2018) have obtained 
a light curve, which they analyzed with the Wilson-Devinney 
model, and did a period analysis, finding periodic changes in 
the times of conjunction, presumably from an orbit with an  
unseen companion.
 Contrary to Shanti Priya et al. (2013), we find that this 
star is a rather conventional W-type W UMa binary with some 
moderately small spots on its surface. We have analyzed the 
new light curves in three ways: 1) as a standard W UMa binary 
without spots, 2) with third light, and 3) with dark spots.

2. Observations

2.1. Photometry
 We took new light curves of MU Cnc for three epochs, 2014 
(16 Feb. and 17–18 March UT), 2016-February (17, 18, 24, and 
28 February and 1 March UT), and 2016-November (14 and 15 
Nov. UT), and a partial light curve for 24 April 2019. The first of 
these comes from Mt.  Bigelow Observatory of the University of 
Arizona, the others from the robotic telescope ROBO at Lowell 
Observatory. Our photometry consists of differential magnitudes 
measured with the usual commercially available BVRI filters 
(Cousins RI); they are not transformed to the standard system 
via observations of standard stars. Since the variable and 
comparison stars were all on the same CCD images, we have 
not corrected them for differential extinction, either. The data 
are available from the AAVSO ftp archive as the ASCII file 

MUCnc-JAAVSO-482.txt at ftp://ftp.aavso.org/public/datasets/. 
Listed are the Reduced Julian Date (RJD = HJD–2400000) of 
observation, and differential magnitudes of the variable and 
check stars for the four passbands. The datasets are identified 
by a symbol at the end of each line, namely, 2014, 2016-feb, 
2016-nov, and 2019. Entries with missing data are identified 
with magnitudes equal to 99.999. There are roughly 250, 300, 
140, and 75 data in each color, respectively, for the four epochs.
 The standard deviations of the check-star observations 
for the V band, which indicate the precision of the data, were 
0.016, 0.004, 0.003, and 0.004, respectively, for our four epochs, 
2014–2019. Averages of the check star ΔVs for the last three 
epochs agreed to within ± 0.001 mag.
 Figure 1 shows the comparison stars we used at the two 
observatories. The comp star for 2014 was the average of the 

Figure 1. Comparison stars used. This is a 20 × 20 arcmin. field from the red 
Palomar Sky Survey. MU Cnc is marked with a V, the 8 comparisom stars used 
in 2014 with numbers, the 3 comparison and check stars for 2016 and 2019 
with Cs and a K, respectively.
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Table 1. Radial velocities for MU Cnc.

 RJD Phase RV1 RV2

 56636.8090 0.964 — –21.7
 56636.8234 0.014 — 33.4
 56636.8308 0.039 — 44.9
 56639.7396 0.035 — 32.0
 56639.7526 0.079 –13.2 93.8
 56639.7850 0.191 –245.2 123.9
 56639.8291 0.342 –200.7 101.9
 56639.8363 0.367 –128.0 80.8
 56639.8781 0.510 — 10.1
 56639.8851 0.534 — 7.8
 56640.7633 0.552 — –1.5
 56640.7709 0.578 89.9 –44.0
 56640.7831 0.620 185.6 –50.7
 56640.7923 0.652 240.7 –70.0
 56640.8049 0.695 280.2 –75.9
 56640.8135 0.725 282.8 –80.7
 56640.8462 0.837 273.8 –66.1
 56640.8547 0.866 211.5 –49.1
 56640.8715 0.924 — –15.8
 56640.8786 0.948 — –2.1

eight numbered stars. For the three later epochs, the comp was 
the average of the three stars labeled C, and K was the check star.

2.2. Spectroscopy
 We also obtained 20 spectra for MU Cnc with the Meinel 
spectrograph at Steward Observatory in Dec. 2013 (Table 1), 
covering the wavelength range 4150–4900Å (0.71Å / pix, 
R ~ 3500). These provide a spectral classification of the star 
and measurements of the radial velocities of both binary 
components.
 To determine a spectral type, we compared spectra for the 
two conjunctions with spectra of some single stars artificially 
broadened to vrot sini = 150 km  s–1 used in a paper about W Crv 
(Eaton, Odell, and Nitschelm 2020). These were HD 38722 
(F8), HD 50692 (G0 V), HD 42807 (G2 V), HD 31501 (G8 V), 
and HD 103095 (K1 V). MU Cnc is definitely later than G2 
but earlier than G8 and is marginally later (cooler) at primary 
eclipse than at secondary eclipse. Given the standards available, 
we can only say the type is in the range G3–G7.
 Odell derived the radial velocities by using IRAF to fit 
double Gaussians to cross-correlation functions. These are the 
velocities given in Table 1, where, following the photometric 
convention, Star 1 is the component eclipsed at primary 
minimum and Star 2 is the one eclipsed at secondary minimum. 
We have fit sine curves to them to derive the orbital elements 
K1 = 254 ± 14 km s–1, K2 = 102 ± 4 km s–1, and γ = 21 ± 3 km  s–1, for 
which the spectroscopic mass ratio is qsp = 2.50 ± 0.46. They are 
plotted with the data in Figure 2; you will notice that the lines 
representing the elements do not cross at phase zero. This is 
because γ is 13 km s–1 larger for the fainter star. This must result 
from a systematic error on one side of that star’s orbit, likely 
near phase 0.25. That would mean K1 should be increased by 
approximately this offset to give K1 ~ 267 km s–1 and qsp ~ 2.63. 
In any case, this spectroscopic mass ratio is significantly larger 
than the photometric mass ratio, which we will try to explain 
by invoking third light.

3. Ephemeris

 Alton and Stępień (2018) analyzed the times of minimum, 
finding that they vary periodically, probably from the light-time 
effect in a triple system. To their seven newly determined times 
of minimum (ToMs), we have added 15 more from Mt. Bigelow 
and ROBO and have added 27 others we measured with 
published archival data, the latter coming from Harvard patrol 
plates, NSVS (Northern Sky Variability Survey; Wozniak et al. 
2004), CSS (Catalina Sky Survey; Univ. Arizona 2006–2009), 
ASAS (All Sky Automated Survey; Pojmański 1997), and 
KELT (Kilodegree Extrememly Little Telescope; Pepper et al. 
2007).
 All these times of minimum are listed in Table 2. The sigmas 
in column 2 are estimated uncertainties, used for weighting 
(σ–2) in the determination of light elements. The epochs listed 
in column 3 were carefully identified by Odell by extending 
the best apparent period at a given epoch backward in time. 
The (O–C)s in column 4 are with respect to the period found 
for recent data (Equation 2); the(O-C)s in column 5 come 
from fitting these residuals with a quadratic but with the data 

Figure 2. Velocity curves for MU Cnc. Circles are for the photometric primary 
star (eclipsed at phase 0.0), dots for the brighter photometric secondary. Lines 
are the fitted sine curves for which K1 = 254 and K2 = 102 km s–1.

unweighted (Equation 3). Column 6 gives the data archive and 
the year from which the time of minimum was obtained.
 To determine a time of minimum (ToM), Odell entered the 
data (ΔMag vs. HJD) in a spreadsheet, which he used to plot 
them against themselves reflected about a trial ToM, adjusting 
the trial ToM to make the reflected light curve coincide with 
the direct light curve on the plot. He estimated an uncertainty 
of 0.5–1 min. for continuous photometry. For the archival data, 
we estimate uncertainties of 0.01 d. for Harvard, 0.003 for 
ASAS, 0.005 for CSS, 0.003 for NSVS, and 0.0015 for KELT. 
For determinations taken from the literature, we have tried to 
use the published values but have set a minimum uncertainty of 
0.0003 d., feeling that smaller values are unrealistic and wanting 
to avoid having such values bias our analysis of period changes.
 Figure 3 shows the timings for a period determined for 
modern data, roughly RJD > 50,000. For earlier (Harvard) data 
the period seems to be much shorter, giving the following two 
piece-wise linear relationships:

HJD (Obs) = 4553526.379(8) + 0.2910074(1) φ, 
for RJD < 50,000,   (1)
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Table 2. Times of minimum light.

	 RJD	 σ	(d)	 Epoch	 (O–C)1	 (O–C)2 Source*

 22082.475 0.01 –108052.0 0.6045 –0.0321 Harvard-1919
 23516.863 0.01 –103123.0 0.5867 –0.0002 Harvard-1923
 28603.6150 0.01 –85643.0 0.4219 –0.0051 Harvard-1937
 29585.7900 0.01 –82268.0 0.4261 0.0271 Harvard-1939
 32262.6150 0.01 –73069.5 0.3630 0.0354 Harvard-1947
 43131.8740 0.01 –35719.0 0.1204 0.0110 Harvard-1976
 44308.7200 0.01 –31675.0 0.1076 0.0149 Harvard-1980
 46095.7950 0.01 –25534.0 0.0684 –0.0015 Harvard-1985
 47200.9000 0.01 –21736.5 0.0494 –0.0080 Harvard-1988
 51554.7130 0.0030 –6775.5 0.0087 –0.0109 NSVS-2000
 52622.8630 0.0005 –3105.0 –0.0065 –0.0197 Pilecki and Stępień (2012)
 52727.7750 0.0030 –2744.5 –0.0049 –0.0176 ASAS-2003
 53036.8320 0.0030 –1682.5 –0.0043 –0.0153 ASAS-2004
 53432.7584 0.0015 –322.0 –0.0018 –0.0109 KELT-2005
 53432.9054 0.0015 –321.5 –0.0003 –0.0094 KELT-2005
 53474.6641 0.0015 –178.0 –0.0021 –0.0110 KELT-2005
 53475.6840 0.0015 –174.5 –0.0007 –0.0096 KELT-2005
 53526.4680 0.0030 0.0 0.0014 –0.0072 NSVS-2000
 53702.8257 0.0030 606.0 0.0049 –0.0029 NSVS-2000
 53853.5680 0.0030 1124.0 0.0022 –0.0050 NSVS-2000
 53874.6611 0.0050 1196.5 –0.0032 –0.0103 CSS-2006
 54194.6394 0.0050 2296.0 0.0057 –0.0001 ––
 54066.8890 0.0050 1857.0 0.0102 0.0040 CSS-2007
 54479.6860 0.0050 3275.5 0.0045 –0.0002 CSS-2008
 54905.7275 0.0050 4739.5 0.0022 –0.0010 CSS-2009
 55290.7349 0.0003 6062.5 –0.0013 –0.0034 Diethelm (2010)
 55555.8430 0.0050 6973.5 –0.0066 –0.0079 CSS-2011
 55572.8704 0.0003 7032.0 –0.0035 –0.0047 Diethelm (2011)
 55667.7409 0.0003 7358.0 –0.0034 –0.0044 Diethelm (2011)
 55668.3223 0.0020 7360.0 –0.0040 –0.0050 28SC+ST7XME
 55669.3402 0.0020 7363.5 –0.0047 –0.0057 28SC+ST7XME
 55932.8517 0.0003 8269.0 –0.0059 –0.0063 Diethelm (2012)
 55932.9996 0.0004 8269.5 –0.0036 –0.0039 Diethelm (2012)
 55984.3678 0.0010 8446.0 0.0008 0.0005 Rukmini and Shanti Priya (2016)
 56704.7696 0.0005 10921.5 –0.0015 –0.0004 Bigelow-2014
 56733.7267 0.0005 11021.0 –0.0002 0.0009 Bigelow-2014
 56733.8732 0.0005 11021.5 0.0008 0.0019 Bigelow-2014
 56734.5997 0.0005 11024.0 –0.0003 0.0009 Bigelow-2014
 56734.7469 0.0005 11024.5 0.0014 0.0026 Bigelow-2014
 56734.8925 0.0005 11025.0 0.0015 0.0027 Bigelow-2014
 56792.6577 0.0005 11223.5 0.0005 0.0018 Bigelow-2014
 57435.8048 0.0005 13433.5 0.0077 0.0096 ROBO-2016
 57442.6434 0.0005 13457.0 0.0075 0.0094 ROBO-2016
 57442.9344 0.0005 13458.0 0.0074 0.0094 ROBO-2016
 57446.8636 0.0005 13471.5 0.0080 0.0099 ROBO-2016
 57448.9006 0.0005 13478.5 0.0079 0.0098 ROBO-2016
 57454.5746 0.0003 13498.0 0.0071 0.0091 Alton and Stępień (2018)
 57455.5936 0.0003 13501.5 0.0076 0.0095 Alton and Stępień (2018)
 57456.6118 0.0003 13505.0 0.0072 0.0092 Alton and Stępień (2018)
 57469.5617 0.0003 13549.5 0.0070 0.0090 Alton and Stępień (2018)
 57471.5995 0.0003 13556.5 0.0077 0.0097 Alton and Stępień (2018)
 57484.5498 0.0003 13601.0 0.0079 0.0099 Alton and Stępień (2018)
 57495.6085 0.0003 13639.0 0.0081 0.0101 Alton and Stępień (2018)
 57706.8808 0.0005 14365.0 0.0046 0.0067 ROBO-2016
 57707.8995 0.0005 14368.5 0.0047 0.0069 ROBO-2016
 57788.2161 0.0005 14644.5 0.0016 0.0038 Nagai (2018)
 57788.3610 0.0005 14645.0 0.0010 0.0032 Nagai (2018)
 58159.1059 0.0005 15919.0 –0.0054 –0.0031 Nagai (2019)
 58443.1321 0.0005 16895.0 –0.0084 –0.0061 Nagai (2019)
 58597.8020 0.0005 17426.5 –0.0122 –0.0100 ROBO-2019

* Source is the data archive and the year from which the time of minimum was obtained.
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Table 3. MU Cnc: light curve solutions.

 Parameter No Spots L3, Spots, Spots, Spots, Alton and
	 	 or	L3	 No	Spots	 2014	 2016-Feb.	 2016-Nov.	 Stępień	(2018)

 i (°) 80.4(3) 80.40 (fixed) 79.6(3) 79.9(2) 79.1(3) 81.35
 q (M2 / M1) 3.089(11) 2.63 (fixed) 3.026(26) 3.090(3) 3.295(13) 2.825
 ω 6.651(18) 5.995(10) 6.542(36) 6.669(9) 6.945(17) 6.283
 fillout 12.3 ± 1.7% 20.5 ± 1.5% 17.6% 10.7% 9.7% 16.4%
 T1 (K, fixed) 5600 5600 5600 5600 5600 5807 
 T2 (K) 5451(70) 5422(110) 5493(17) 5550(27) 5508(27) 5620 
 <σfit> 0.0049 0.0056 0.0059 0.0026 0.0017  
     ℓ3/(ℓ1 + ℓ2)
 B — 0.079 — — — 0.064
 V — 0.068 — — — 0.073
 Rc — 0.075 — — — —
 Ic — 0.094 — — — 0.558

	 Spots	on	the	More	Massive	Component

 long (°) none none 49(10) 159(5) and 328(4) 146(3) none
 rspot (°)  — — 10.8(8) 12.3(11) and 11.0(7) 14(1) —

Note: Numbers in parentheses are the errors of the last digits. All spots are assumed to be on the equator and to have a temperature 80% of the underlying photosphere.

and

HJD (Obs) = 4553526.4666(14) + 0.29101355(14) φ, 
for RJD > 50000, (2)

numbers in parentheses being uncertainties of the last digits, φ 
being the phase. These fits are shown in the top panel of Figure 3.
 We have also fit the linear residuals with a quadratic 
equation, weighting the data equally, to give the following 
quadratic elements:

HJD (Obs) = 4553526.4752(4) + 0.2910122(1) φ + 
4.1(1) × 10–11φ2.  (3)

This quadratic fit is not very convincing, and a quadratic fit 
calculated with realistic weights simply failed to fit the data.
 It’s disturbing that we have found an abrupt period increase 
at just the break between the ToMs from Harvard patrol plates 
and modern measurements; obviously one should be skeptical 
of this result. Yet the light curves seem to be reasonable, and 
Odell’s extension of the phases did not break on close inspection 
[JAE]. Also, there have been precipitate period changes in other 
contact binaries (e.g. Pribulla et al. 1997).
 The residuals from Eqation 2 are clearly cyclic as discovered 
by Alton and Stępień. These are shown in the lower panel of 
Figure 3. The period seems to be in the range 2930 ± 100 d. 
Fitting a sine curve to these residuals (Equation 4), we derive 
a semiamplitude of 9.2 min, corresponding to an orbit with 
a1,2 sini = 1.10 au for a light-time effect.

(O–C) = 0.0064(5) sin (2π(RJD – 50,712) / 2930)  (4)

The variation expected in the γ velocity of the eclipsing system 
would then be ± 4 km s–1 over 8 years. There is obviously more 
here than motion in a wide orbit, since the last three points 
in the lower panel of Figure 3 depart considerably from the  
fitted curve.

Figure 3. (O–C) diagrams for MU Cnc. Upper: Piece-wise linear ephemerides 
for residuals with respect to Equation 2. Lower: Periodic deviations from the 
linear fit for modern data (Equation 2). The sinusoid is the fit of Equation 4.

4. Light curve solutions

 Our three complete light curves give us the opportunity 
to look at changes in the light curve and their possible causes. 
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Some elements cannot change materially over a period of a few 
years, so they have to be the same for all three of our epochs. 
These include the total mass M1 + M2, the mass ratio, q, the 
inclination, i, third light, and—likely—the total luminosity 
of the system. Others might well change, such as spottedness 
from random variation in magnetism, and both the degree of 
fillout (Ω) and the temperature difference (T1 – T2), should 
the energy-transfer mechanism change, perhaps through  
magnetic modulation.
 We have solved our light curves with the Wilson-Devinney 
code (wd 2015 version; see Wilson and Devinney (1971); 
Wilson (1990, 1994); Wilson and van Hamme (2015)), finding 
the elements in Table 3. These are roughly consistent with 
Alton and Stępień’s solution (see Table 3, column 7). In these 
calculations we adopted a temperature of the primary consistent 
with its spectral class, convective gravity darkening (Lucy 
1967), convective reflection effect (Ruciński 1969), the Kurucz-
atmospheres option in the wd code, and linear limb-darkening 
coefficients from van Hamme (1993) calculated by the wd code. 
The σfits listed are the median weighted residuals calculated by 
the wd code. The quoted errors of the elements are the standard 
deviations of the three solutions for columns 2 and 3, and the 
standard errors from the wd code, multiplied by 3 per Popper 
(1984) for the others. Calculated fits are shown in Figures 4 
through 8.
 We also included both velocity curves in the solution for 
the cases having no spots but omitted the velocities of the less 
massive star for the analyses with spots.

4.1. No third light, no spots
 This represents the traditional approach to contact binaries. 
We started by solving the three light curves separately to see 
just how much variation in the elements to expect. For the 
principal elements, the range was 0.005 in Ω (potential of the 
surface), 0.012 in q, 0.42° in i, and 189 K in T2. We then picked 
roughly average values for those element not expected to vary 
and solved the light curves again to detect changes in the 
potentially more volatile elements. Results are given in column 
2 of Table 3, a plot of the fit for 2016-feb, our most extensive 
data set, in Figure 4. With the mass ratio fixed, Ω increased by 
0.037 from 2014 to 2016-nov, with fillout decreasing from 15% 
to 9%, and T2 falling by 144 K.

4.2. Third light?
 The marked difference between the mass ratios determined 
photometrically and spectroscopically suggests that the putative 
third star giving the light-time effect seen in Figure 3 is also 
contributing a measurable amount of third light. To test this idea, 
we solved the light curves again with the mass ratio fixed at the 
spectroscopic value (2.63). Results are given in column 3 of 
Table 3 and plotted for 2016-feb in Figure 5. Although the mean 
residuals we found are slightly smaller than for the solution 
without third light, this result is not convincing physically. The 
third light derived varied by a factor of about 3–4 amongst our 
three light curves when we solved them individually, and the 
average value we give in Table 3 has a spectrum much too like 
the eclipsing pair (too early) to be light from a dwarf companion, 
as did the spectrum of ℓ3 in the separate solutions.

4.3. Minimal spots
 This system is a W-type contact binary with the cooler, 
more massive component eclipsing its companion at primary 
minimum. That is obvious from the velocity curves in Figure 2, 
but it also follows from the shapes of the eclipses. Such 
systems have long been suspected of being heavily spotted. 
In fact, a different level of uniform spottedness between the 
components has even been suggested as the cause of their 
apparent temperature difference (e.g. Eaton et al. 1980; Eaton 
1986; Barnes et al. 2004; Stępień 2009). Barnes et al. found 
evidence in their wonderful Doppler images of AE Phe that 
both components of that star are highly spotted, finding 
convincing trails of some individual spots in their line profiles 
and arguing somewhat less convincingly for evidence of many 
more small spots. So we wonder what effect spots have on  
this system.
 Even a cursory inspection of Figures 4 and 5 shows that the 
model does not really fit the data at the level of their precision. 
Such deviations are usually explained by invoking spots, often a 
rather surprising number of them (e. g. Samec et al. 2010) and in 
bizarre locations (e. g. Samec et al. 2011). We have looked at the 
question of just how few spots we would need to explain these 
deviations. And we have also decided to place the spots only 
on the larger, more massive star, if possible. Obviously there 
could be spots on both stars, as Barnes et al. (2004) found for AE 
Phe. Furthermore, from our experience with RS CVn binaries 
we do not think the wd model is good enough to measure spot 
latitudes, so we place the spots on the equator. Latitude can be 
quite difficult to determine, even with top-of-the-line Doppler 
images (see Barnes et al. 2004, section 4).
 We’ll start with a spot solution for 2016-nov. The light 
curve here lies below the calculations on the rising branch of 
primary minimum, and a single moderate spot improves the fit 
markedly (Table 3, column 6 and Figure 6).
 The light curves for 2014 and 2016-feb are both more 
complicated, 2014 showing an approximate classical O’Connell 
effect, with phases near 0.25 noticeably depressed. At this 
epoch, we started with a single spot to remove this depression. 
(Table 3, column 4 and Figure 7), although not at the longitude 
we had expected. There are likely more spots for 2014, but the 
data are not precise enough to justify looking further.
 The light curves for 2016-feb showed the rising branches of 
both eclipses depressed, requiring two spots. These we placed 
on the cooler component, although they could have been on 
either. However, there may be some distortion of secondary 
minimum by the eclipse of the spot at longitude 328° that settles 
the ambiguity for that spot (Figure 8).
 We again set the stable parameters to average values for 
the three solutions (i = 79.51° and q = 3.180) and solved the 
light curves a second time. The mean residuals increased a 
meaningless 7–18%, the spots remained roughly the same, but 
the fillout dropped from ~ 18% from the first two epochs to 6% 
for 2016-nov.
 The big question here is whether changes in spots can 
account for the apparent variation in such physical quantities 
as Ω and T1 – T2. In our analysis of the three epochs, it did not. 
The variation of the derived inclination remains above the 
uncertainties of measurement, but the unexpected variation 
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Figure 4. Light curve fit for February 2016 with no third light or spots. Notice 
how the fitted curve lies above the observations on both rising branches  
(φ ~ 0.2 and 0.7) and below on the falling branch of secondary eclipse.

Figure 5. Light curve fit for February 2016 with third light. We fix the mass 
ratio at its spectroscopic value, fit the light curves, and derive the third light 
for the four passbands.

Figure 6. Light curve fit for 2016-nov with one dark starspot on the larger 
component.

Figure 7. Light curve fit for 2014 with a dark starspot on the larger component.
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magnitude differences between the comp and check stars for 
those two latter epochs show that the photometric system was 
quite stable and that the comparison stars did not vary. Thus 
we would expect any changes between these light curves to 
be caused by the star itself, not by changes in the photometric 
system. Furthermore, since this star has marginally total 
eclipses, the light curve solutions should be fairly reliable.
 Including third light did not explain the discrepancy 
between photometric and spectroscopic mass ratios. Most likely 
that results from systematic errors in the velocities of fainter 
component. The main effects of third light on the solution are 
to give a larger mass ratio (closer to 1.0) and a thicker common 
envelope. Indeed, the solution from Alton and Stępień—itself 
with third light—shows both effects, giving a derived mass ratio 
and larger filling factor consistent with our values.
 Dark starspots certainly can explain some of the more 
obvious deviations of the star from the Roche model. However, 
including only one or two such spots did not resolve the problem 
of changes of q, i, and Ω amongst the light curves. At this time, 
that would seem to imply a much more extensive distribution 
of dark spots, one that really does not change greatly with 
time. This would make the cool contact binaries different 
from the RS CVn binaries, which show much larger apparent 
concentrations of spots with putative magnetic cycles. We do 
not think these latter phenomena are seen in W UMa binaries, 
but the data that would reveal them are rather scanty (but see 
Ruciński and Paczynski (2002) for a cautionary tale). A further 
point in favor of much more extensive spottedness is a variation 
in the general levels of the light curves. Figure 9, a plot of 
the V light curve for the three epochs, shows that the level at 
both maxima changed, despite our expecting the star to have 
a constant brightness beyond the slight depressions modelled 
with a few discrete spots.
 Envelope circulation in these contact binaries must have 
significant effects on their magnetism, at least in its distribution. 
The W UMa systems are fairly strong sources of chromospheric/
transition-region emission with high levels of X-ray flux, 
roughly covered uniformly with active regions (Ruciński and 
Vilhu 1983; Ruciński et al. 1985; Stępień et al. 2001; Chen et al. 
2006), which means they are almost certainly highly magnetic. 
The apparent lack of large concentrations of spots in contact 
systems may reflect the inability of spots to stick around long 
enough to develop large structures. Also, such concentrations 
are readily explained by a random distribution of such spots, 
but only if the spots are moderately large and not too numerous 
(Eaton et al. 1996). As the spots become smaller and more 
numerous, the effect of random clumping declines.
 Spots, at least in the Sun, seem to be a superficial 
phenomenon not anchored deeply in the star—somewhat like 
Jupiter’s Red Spot and analogous to weather (e.g., Zhao et al. 
2001). This should be obvious by consideration of the difference 
between the effects of kG magnetic fields in solar-type and Ap 
stars. By way of speculation, we would hypothesize that the 
circulation sweeps the spots produced by any dynamo in the 
more massive star off its face onto its less massive companion 
where they are subducted by the flow and their magnetic field 
redistributed. This mechanism provides a possible source of the 
ephemeral dark spots often invoked to explain peculiarities of 

Figure 9. A comparison of the levels and shapes of the light curves at the three 
epochs. Symbols: small black dots = 2014, large magenta dots = 2016-feb, 
and red xs = 2016-nov.

Figure 8. Light curve fit for 2016-feb with two dark starspots on the larger 
component.

of the mass ratio is completely perverse. Here, we are back to 
the question of whether spottedness is the cause of the W-type 
phenomenon. We will not address that possibility at this time, 
if merely to reflect Odell’s extreme skepticism of light curve 
solutions featuring large numbers of apparently arbitrarily 
located spots. However, if a changing distribution of spots is 
not the cause of the changing depth of the eclipses, then some 
unknown mechanism must be responsible.

5. Discussion

 We have complete light curves for three epochs, two 
of which were taken with the same instrument. The small 
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W UMa-type light curves, as we have done here. The inevitable 
random variations in the distribution of spots being carried 
along by the circulation would still give measurable temporary 
concentrations of spots.
 Perhaps the most important upshot here is that there are 
limits to just how precisely we can know the physical properties 
of a contact binary from light curve solutions. Our fits show 
that the mass ratio, for instance, seems to be uncertain by up to 
9% (the range of values in columns 4–6 in Table 3). This is in 
contrast to the tenths of a percent derived as formal errors of a 
typical fit. It also echos Popper’s (1984) reasoning in arguing 
that such formal errors are misleading, that they underestimate 
the true uncertainties by about a factor of three. This result 
is unfortunate, since it limits our ability to define changes in 
physical properties, most notably the fillout, that might be 
related to fluctuations of the energy-transfer mechanism.
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