Binaries with Mass Ratios Near Unity: The First BVRI Observations, Analysis and Period Studies of TX Canis Minoris and DW Canis Minoris

Ronald G. Samec
Pisgah Astronomical Research Institute, 112 Idlewood Acres, Hartwell, GA 30643; ronaldsamec@gmail.com

Daniel Caton
Jacob Ray
Riley Waddell
Davis Gentry
Dark Sky Observatory, Physics and Astronomy Department, Appalachian State University, 525 Rivers Street, Boone, NC 28608-2106; catondb@appstate.edu

Danny Faulkner
Johnson Observatory, 1414 Bur Oak Court, Hebron, KY 41048; dfaulkner@answersingenesis.org
Received February 25, 2021; revised July 13, 14, 2021; accepted July 14, 2021

Abstract

CCD BVRI light curves of TX CMi and DW CMi were taken in 2020 on 20, 21 January, 22, 23 February, and 4 April with the $0.81-\mathrm{m}$ reflector of Appalachian State University by Daniel Caton, Ronald Samec and Danny Faulkner. Six times of minimum light were determined from our present observations of TX CMi. Fifty-five total times of minimum light were included in the 61 -year period study. From these we determined that the period for TX CMi is increasing. Eight times of minimum light were determined for DW CMi and thirty-five total times of minimum light were included in the 19.3-year period study. The period is weakly decreasing with a quadratic term of -1.9×10^{-11}. This could be due to mass transfer to $\mathrm{M}_{1}\left(\mathrm{q}=\mathrm{M} 2 / \mathrm{M}_{1}\right)$ for DW CMi. A Wilson-Devinney (W-D) analysis of TX CMi reveals that the system is a W UMa binary with a mass ratio near unity, q~1.00. Its Roche Lobe fill-out is $\sim 10 \%$. One spot was needed in the modeling. The temperature difference of the components is only $\sim 90 \mathrm{~K}$, so the stars are nearly twins, with the secondary component the slightly cooler one. The inclination is high, $86.9 \pm 0.1^{\circ}$. A W-D analysis reveals that DW CMi is a W-type W UMa binary a mass ratio near unity, q ~ 1.1. Its Roche Lobe fill-out is $\sim 10 \%$. One weak spot was needed in the modeling. The temperature difference of the components is $T_{2}-T_{1} \sim 260 \mathrm{~K}$, making the binary of W-type.

1. History and observations

1.1. TX CMi

Even though the TX CMi has been known for some 90 years, very little information is known about the binary. We summarize it here. The variability of TX CMi ([GGM 2006] 12715955) was discovered by Hoffmeister (1929). He found it to be a short period variable and little more. It was classified as an EB (β Lyrae) system with a magnitude of $\mathrm{V}=13.461$ by Gessner (1966). Paschke (1994), using minima from BBSAG bulletins, improved his earlier period (0.3892 d, Paschke 1992) with elements of TX CMi:

$$
\begin{equation*}
\operatorname{Min} I \mathrm{HJD}=2436598.611+0.3892173 \mathrm{~d} \times \mathrm{E} \tag{1}
\end{equation*}
$$

Otherwise, a number of times of minima and one low light exist which are noted in the period study.

The system was classified as an EW-type by the All Sky Automated Survey (Shappee et al. 2014; Kochanek et al. 2017) as ASASSN-V J074019.94+044239.5 (Pojmański 2002). This catalog gives key information: $\mathrm{a}_{\text {mean }}=13.58$, an amplitude of 0.8 , and EW designation, $\mathrm{J}-\mathrm{K}=0.396, \mathrm{~B}-\mathrm{V}=0.635, \mathrm{E}(\mathrm{B}-\mathrm{V})$ $=0.05$, and GAIA distance $=794 \pm 10 \mathrm{pc}$. Their ephemeris is:

$$
\begin{equation*}
\text { MinI HJD }=2458023.09677+0.3892165 \mathrm{Ed} \times \mathrm{E} \tag{2}
\end{equation*}
$$

The ASAS light curve is given in Figure 1.

1.2. DW CMi

DW CMi (GSC2.2 N22123134124) was discovered in 2005 by the SkyDOT team (Polster, Zejda, and Safar 2005) of Copernicus Observatory in Brno, Czech Republic. They gave an R magnitude of 14.3, an EW type, and an ephemeris of:

$$
\begin{equation*}
\text { MinI HJD }=2451965.2876 \pm 0.0009+0.30755 \mathrm{~d} \times \mathrm{E} \tag{3}
\end{equation*}
$$

Figure 1. ASAS light curves of TX CMi (Pojmański 2002).

Table 1. Photometric targets.

Star	Name	R.A. (2000)	Dec. (2000)	V (mag)	$J-K$ (mag)
		$h \mathrm{~m}$ s	- , "		
TX CMi	AN 146.1929	074020.1^{1}	+04 4239.5^{1}	14.23	0.396 ± 0.054^{1}
	ASAS J074020+0442.7				
	NSVS 127159566868894				
DW CMi	GSC2N22123134124	074033.0^{1}	+04 4220.1^{1}	14.75	0.429 ± 0.062^{1}
	2MASS J07403307+0442200				
	USNO-A2.0 0900-05269593				
C (comparison)	GSC 01871415	074033.0^{2}	+04 4355.90^{2}	14.75	0.38
	3UC190-079026				
K (check)	GSC 01871966	074043.3^{1}	+04 4236.6^{1}	10.46	0.256 ± 0.045^{1}

${ }^{1}$ SMBAD. ${ }^{2}$ UCAC3: The USNO CCD Astrograph Catalog (Zacharias, N., et al. 2010).

They also gave a position of R.A. (2000) $=07^{\mathrm{h}} 40^{\mathrm{m}} 33^{\mathrm{s}}$, Dec. $(2000)=+04^{\circ} 42^{\prime} 17^{\prime \prime}$. The only other information published has been times of minimum light (see Table 3, period study table of DW CMi and plots, Figures 10 and 11). The system was observed by the All Sky Automated Survey as ASASSN-V J074032.97+044219.9 (Pojmański 2002). This catalog gives key information: a $\mathrm{V}_{\text {mean }}=14.65$, an amplitude of 0.59 , EW designation, $\mathrm{J}-\mathrm{K}=0.429, \mathrm{~B}-\mathrm{V}=0.741, \mathrm{E}(\mathrm{B}-\mathrm{V})=0.047$, and GAIA distance $=904 \pm 18 \mathrm{pc}$. Their ephemeris is:

$$
\begin{equation*}
\operatorname{Min} I \mathrm{HJD}=2457322.13402+0.3075535 \mathrm{~d} \times \mathrm{E} . \tag{4}
\end{equation*}
$$

The ASAS light curve is given in Figure 2.

Figure 2. ASAS light curves of DW CMi (Pojmański 2002).

These systems were observed as a part of our professional collaborative studies of interacting binaries at Pisgah Astronomical Research Institute using data taken from DSO observations.

The observations were taken by D. Caton, R. Samec, and D. Faulkner. Reduction and analysis were done by R. Samec.

Our $\mathrm{BVR}_{\mathrm{c}} \mathrm{I}_{\mathrm{c}}$ light curves were taken at Dark Sky Observatory, on 20, 21, January, 22, 23 February, and 4 April 2020 , with a thermoelectrically cooled $\left(-40^{\circ} \mathrm{C}\right) 2 \mathrm{~K} \times 2 \mathrm{~K}$ Apogee camera and Johnson-Cousins BVR I_{c} filters. Individual observations included 163 in B, 213 in V, 240 in R, and 225 in I. The probable error of a single observation was 9 mmag in B, 11 mmag in $\mathrm{V}, 16 \mathrm{mmag}$ in R , and 18 mmag in I. The nightly $\mathrm{C}-\mathrm{K}$ values stayed constant throughout the observing run with a precision of about $1.0-1.5 \%$ in V. Exposure times
varied from 150s in B, $75-100$ s in V, and 40 s in R and I. To produce these images, nightly images were calibrated with 25 bias frames, at least five flat frames in each filter, and ten 300 -second dark frames. The early results of this study were presented at the American Astronomical Society meeting \#237, 11-15 January (Caton et al. 2021; Samec et al. 2021).

2. Photometric targets

Table 1 gives basic information on the two variables and the comparison (C) and check (K) stars, including designations, positions, magnitudes, and colors. The finding chart for DW CMi and TX CMi and the comparison and check stars is given in Figure 3.

Figure 3. Finding chart (V) for variables TX CMi and DW CMi, comparison (C), and check (K), 4 April 2020.

3. Sample nightly light curves

Two nightly light curves of TX CMi are given as Figures 4 and 5 for 20 and 22 January 2020. Also, nightly light curves of DW CMi are given as Figures 6 and 7 for 20 January and 22 February.

Figure 4. B, V light curves and B-V color curves of TX CMi for 20 January 2020.

Figure 5. R, I light curves and R-I color curves of TX CMi for 22 February 2020.

Figure 6. B, V light curves and B-V color curves of DW CMi for 23 February 2020.

Figure 7. R, I light curves and R-I color curves of DW CMi for 21 January 2020.

Figure 8. A plot of the quadratic term overlying the linear residuals for TX CMi (showing an increasing period).

Figure 9. A plot of the linear residuals for TX CMi

Table 2. Period study TX CMi.

	Epoch	Cycle	Initial Residual	Linear Residual	Quadratic	Residual	Wt

4. Period determination, TX CMi

Six mean times (from BVRI data) of minimum light were calculated from our present observations, three primary and three secondary eclipses:

HJD I $=2458869.65009 \pm 0.00030$, $2458901.56743 \pm 0.00060 .2458943 .60276 \pm 0.00069$

HJDII $=2458868.67688 \pm 0.00030,2458869.84431 \pm 0.00060$, $2458902.53853 \pm 0.000038$.

All minima were weighted as 1.0 in the period study except for one time of low light which was weighted 0.1. In total, 55 times of minimum light (References listed in Table 2) were included in this study. This gave us an interval of 61 years.

Table 3. Times of minimum light, DW CMi.

	Epoch	Cycle	Linear Residual	Quadratic Residual	Wt

From these timings, two ephemerides have been calculated, a linear one and a quadratic one:

$$
\begin{align*}
& \text { JD Hel Min } \mathrm{I}=24558869.63843 \pm 0.00098 \mathrm{~d}+0.3892179629 \\
& \pm 0.0000000667 \times \mathrm{E} . \tag{5}
\end{align*}
$$

JD Hel Min I $=2458869.64764 \pm 0.00062 \mathrm{~d}+0.3892192001$
$\pm 0.0000000658 \times \mathrm{E}+0.000000000027$
$\pm 0.000000000001 \times \mathrm{E} 2$.

Figure 8 shows the quadratic term overlying the linear residuals and Figure 9 gives the linear residuals. Table 2 gives the minima and the residuals of the quadratic and the linear ephemerides.

This TX CMi period study covers an interval of 61 years. It shows an orbital period that is increasing. It might be due to mass transfer to the more massive, component (probably our primary component) making the mass ratio more extreme. Table 2 give the residuals of the linear and quadratic ephemerides. The initial ephemeris was HJD Min $\mathrm{I}=2458869.650088+0.3892184012 \times \mathrm{E}$.

5. Period determination, DW CMi

Eight mean times (from BVRI data) of minimum light were calculated from our present observations, three primary and five secondary eclipses:

HJDI $=2458868.67357 \pm 0.00090,2458901.5827 \pm 0.0004$, 2458902.5052 ± 0.0019

HJD II $=2458868.82446 \pm 0.00030$, $2458869.74956 \pm 0.00017,2458901.7360 \pm 0.0008$, $2458902.65829 \pm 0.00022,2458943.56315 \pm 0.00022$

All minima were weighted as 1.0 in the period study except for the ASAS-SN times of low light which was weighted 0.1. In total, 35 times of minimum light (References listed in Table 3) were included in this study. This gave us an interval of 19.3 years.

From these timings, two ephemerides have been calculated, a linear one and a quadratic one:

$$
\begin{align*}
& \text { JD Hel Min I }=2458868.67452 \pm 0.00041 \mathrm{~d} \\
& +0.307555157 \pm 0.000000034 \times \text { E. } \tag{7}
\end{align*}
$$

Table 4. Light curve characteristics, TX CMi.

Filter	Phase MinI	Mag $\pm \sigma$	Phase MaxI	Mag $\pm \sigma$	
	0.00		0.25		
B	-0.093	0.021	-1.091	0.002	
V	-0.167	0.024	-1.100	0.005	
R	-0.173	0.003	-1.105	0.008	
I	-0.274	0.061	-1.090	0.024	

JD Hel Min I $=2458868.67380 \pm 0.00042 \mathrm{~d}+0.30755479$ $\pm 0.00000009 \times \mathrm{E}-0.000000000019 \pm 0.000000000005 \times \mathrm{E} 2$. (8)

The residuals of the quadratic and linear ephemerides are given in Table 3.

The phased BVRI light curves and B-V and R-I color curves of TX CMi and DW CMi are given in Figures 12, 13, 14 , and 15 .

6. Light curve characteristics

6.1.TX CMi

The curves are of fair accuracy, averaging better than 2% photometric precision. The amplitude of the light curves varies from $0.87-1.1$ mags from B to I filters. The O'Connell effect, an indicator of spot activity, averages 0.06 mag , which indicates the existence of spots. The differences in minima are appreciable, from 0.07 to 0.22 mag , I to B, respectively, indicating a fair difference in component temperatures. The secondary amplitude averages 0.75 mag , large for a contact binary. The light curve characteristics of TX CMi are given in Table 4.

6.2. DW CMi

Again, the DW CMi curves are of good accuracy, averaging about 2% photometric precision. The amplitude of the light curve varies from $0.76-0.63 \mathrm{mag}$ from B to I filters. The O'Connell effect averages 0.03 mag in B and 0.02 mag

Table 5. Light curve characteristics, DW CMi.

Filter	Phase Min I		$\begin{gathered} M a g \\ \pm \sigma \end{gathered}$	Phase Max I	$\begin{array}{r} M a g \\ \pm \sigma \end{array}$	
	0.00				0.25	
B	0.787		0.037	0.058	0.008	
V	0.665		0.037	-0.013	0.009	
R	0.585		0.006	-0.067	0.011	
I	0.518		0.008	-0.099	0.022	
Filter	Phase Min II	$\begin{gathered} M a g \\ \pm \sigma \end{gathered}$		Phase	Mag	
				Max II		
0.5				0.75		
B	0.622		0.022	0.026	0.008	
V	0.553		0.008	-0.032	0.022	
R	0.487		0.009	-0.087	0.010	
I	0.432		0.040	-0.116	0.036	
Filter	Min I-	$\pm \sigma$	Max I-	$\pm \sigma$	Min I-	$\pm \sigma$
	Max I	$\pm \sigma$	Max II	$\pm \sigma$	Min II	$\pm \sigma$
B	0.729	0.045	0.032	0.016	0.165	0.059
V	0.678	0.046	0.019	0.030	0.112	0.045
R	0.652	0.016	0.020	0.021	0.098	0.014
I	0.617	0.030	0.017	0.058	0.086	0.047
Filter	Min II-	$\pm \sigma$	Min I-	$\pm \sigma$	Min II -	$\pm \sigma$
	Max I	$\pm \sigma$	Max II	$\pm \sigma$	Max II	$\pm \sigma$
B	0.564	0.030	0.761	0.045	0.596	0.03
V	0.566	0.017	0.697	0.059	0.585	0.03
R	0.554	0.019	0.672	0.015	0.574	0.018
I	0.531	0.062	0.634	0.043	0.548	0.076

in VRI, which indicates the existence of weak spots. The differences in minima are appreciable, from, 0.09 to 0.17 mag , I to B, respectively, indicating a small difference in component temperatures. The secondary amplitude is $0.60,0.585,0.58$, $0.55 \mathrm{mag}, \mathrm{B}$ to I, which is fairly large for a contact binary. The light curve characteristics of DW CMi are given in Table 5.

7. Temperatures

The 2MASS $\mathrm{J}-\mathrm{K}=0.396 \pm 0.054$ for TX CMi and $\mathrm{B}-\mathrm{V}=$ $0.635, \mathrm{E}(\mathrm{B}-\mathrm{V}) \sim 0.05$. These correspond to $\sim \mathrm{G} 5 \mathrm{~V} \pm 2$, which yields a temperature of $5750 \pm 200 \mathrm{~K}$. Fast rotating binary stars of this type are noted for being magnetic in nature, so the binary is of solar-type with a convective atmosphere.

The $\mathrm{J}-\mathrm{K}$ for $\mathrm{DW} \mathrm{CMi}=0.429 \pm 0.062$ and $\mathrm{B}-\mathrm{V}=0.741$, $\mathrm{E}(\mathrm{B}-\mathrm{V})=0.047$. These correspond to $\sim \mathrm{G} 8 \mathrm{~V} \pm 2$, which yields a temperature of $5500 \pm 200 \mathrm{~K}$.

8. Light curve solutions, TX CMi

The B,V, R_{c} and I_{c} curves of TX CMi were pre-modeled with Binary Maker 3.0 (Bradstreet and Steelman 2002). Fits were determined in all filter bands and the results were tabulated. The solutions were that of a shallow contact eclipsing binary. The parameters were then averaged (q or mass ratio $=0.9$, fill-out $=0.05$, i or inclination $=88$, $\mathrm{T}_{2}=5562.5$, and one cool spot with t -fact $\left.\left(\mathrm{T}_{\text {spo }} \mathrm{t} / \mathrm{T}_{\text {photosphere }}\right) 0.87\right)$ and input into a 4 -color simultaneous light curve calculation

Figure 10. A plot of the quadratic term overlying the linear residuals for DW CMi (showing weakly decreasing period).

Figure 11. A plot of linear residuals of DW CMi.

Figure 12. B, V light curves and B-V color curves of TX CMi.

Figure 13. R, I light curves and R-I color curves of TX CMi.

Figure 14. B, V light curves and B-V color curves of DW CMi.

Figure 15. R, I light curves and R-I color curves of DW CMi.

Figure 16. q-search for TX CMi, solutions with fixed mass ratio vs. solution residual.

Figure 17. TX CMi B,V normalized flux curves and B-V color curves overlain by B, V solutions.

Figure 18.TX CMi $\mathrm{R}_{\mathrm{c}}, \mathrm{I}_{\mathrm{c}}$ normalized flux curves and $\mathrm{R}_{\mathrm{c}}-\mathrm{I}_{\mathrm{c}}$ color curves overlain by R_{c}, I_{c} solutions.

Figure 19. Geometrical representations of TX CMi at quadratures.

Figure 20. DW CMi, q-search with fixed mass ratio vs. the solution residual.

Figure 21. DW CMi B, V normalized flux curves and B-V color curves overlain with B, V solutions.

Figure 22. DW CMi R, I normalized flux curves and R-I color curves overlain with R, I solutions.

Figure 23. DW CMi geometrical representations at quadratures.
using the Wilson-Devinney Program (W-D; Wilson and Devinney 1971; Wilson 1990, 1994; van Hamme and Wilson 1998). The initial computation was in Mode 3 and converged to a solution ($q \sim 0.7$). Because there was no total eclipse, a q -search was instigated. In a q-search, a solution is produced for fixed mass ratios. The sum of square residuals is listed for each. The smallest residual is considered to belong to the best estimate of the mass ratio. The minima was fairly broad, with similar residuals between $\mathrm{q} \sim 0.8$ and $\mathrm{q} \sim 1.15$ and the very best goodness of fit residual was at a minima of $q=1.0$. The q -search is shown in Figure 16. Convective parameters, $\mathrm{g}=$ $0.32, \mathrm{~A}=0.5$ were used. The $\mathrm{q}=1.0$ solution is given in Table 6 . Figures 17 and 18 show the $\mathrm{BVR}_{\mathrm{c}} \mathrm{I}_{\mathrm{c}}$ flux overlaid by the light curve solutions. Geometric representations of the surface of the binary at quadratures are given in Figure 19. Table 7 gives the system dimensions and Table 8 gives absolute parameters.

9. Light curve solutions, DW CMi

As with TX CMi , the $\mathrm{B}, \mathrm{V}, \mathrm{R}_{\mathrm{c}}$ and I_{c} curves were premodeled with Binary Maker 3.0. Fits were determined in all filter bands and the results were tabulated. The results were, again, that of a shallow contact eclipsing binary. The averaged parameters were $\mathrm{q}=0.7$, fill-out $=0.05, \mathrm{i}=78.5^{\circ}$, $T_{2}=5300 \mathrm{~K}$, and one cool spot with t -fact $=0.91$ and was followed by analysis by the W-D program. The initial computation was in Mode 3 and converged to a solution

Table 6. B,V,R $\mathrm{R}_{\mathrm{c}} \mathrm{I}_{\mathrm{c}}$ Wilson-Devinney program solution parameters, TX CMi.

Parameter	Value
$\lambda_{\mathrm{B}}, \lambda_{\mathrm{V}}, \lambda_{\mathrm{R}}, \lambda_{\mathrm{I}}(\mathrm{nm})$	440, 550, 640, 790
$\mathrm{g}_{1}, \mathrm{~g}_{2}$	0.32
$\mathrm{A}_{1}, \mathrm{~A}_{2}$	0.5
Inclination (${ }^{\circ}$)	$86.91 \pm 0.13^{\circ}$
$\mathrm{T}_{1}, \mathrm{~T}_{2}(\mathrm{~K})$	$5750,5559 \pm 1$
Ω	3.6953 ± 0.0028
$\mathrm{q}\left(\mathrm{m}_{2} / \mathrm{m}_{1}\right)$	1.002 ± 0.002
Fill-outs: $\mathrm{F}_{1}=\mathrm{F}_{2}(\%)$	0.10 ± 0.01
$\mathrm{L}_{1} /\left(\mathrm{L}_{1}+\mathrm{L}_{2}+\mathrm{L}_{3}\right)_{\mathrm{I}}$	0.5277 ± 0.0009
$\mathrm{L}_{1} /\left(\mathrm{L}_{1}+\mathrm{L}_{2}+\mathrm{L}_{3}\right)_{\mathrm{R}}$	0.5321 ± 0.0011
$\mathrm{L}_{1} /\left(\mathrm{L}_{1}+\mathrm{L}_{2}+\mathrm{L}_{3}\right)_{\mathrm{V}}$	0.5381 ± 0.0007
$\mathrm{L}_{1} /\left(\mathrm{L}_{1}+\mathrm{L}_{2}+\mathrm{L}_{3}\right)_{\mathrm{B}}$	0.5514 ± 0.0007
$\mathrm{JD}_{\text {o }}$ (days)	2458868.8713 ± 0.0001
Period (days)	0.38921992 ± 0.0000009
$\mathrm{r}_{1} / \mathrm{a}, \mathrm{r}_{2} / \mathrm{a}$ (pole)	$0.363 \pm 0.002,0.363 \pm 0.0002$
$\mathrm{r}_{1} / \mathrm{a}, \mathrm{r}_{2} / \mathrm{a}$ (side)	$0.382 \pm 0.002,0.382 \pm 0.002$
$\mathrm{r}_{1} / \mathrm{a}, \mathrm{r}_{2} / \mathrm{a}$ (back)	$0.417 \pm 0.003,0.417 \pm 0.003$

Spots, Star 1	
Colatitude $\left({ }^{\circ}\right)$	$74.6 \pm 2.4^{\circ}$
Longitude $\left({ }^{\circ}\right)$	$282.3 \pm 0.7^{\circ}$
Radius $\left({ }^{\circ}\right)$	$20.2 \pm 0.4^{\circ}$
T-factor	0.781 ± 0.009

Table 7. TX CMi system dimensions.

$\mathrm{R}_{1}, \mathrm{R}_{2}\left(\text { pole, } \mathrm{R}_{\odot}\right)^{1}$	1.005 ± 0.0006	1.005 ± 0.0006
$\mathrm{R}_{1}, \mathrm{R}_{2}\left(\text { side, } \mathrm{R}_{\odot}\right)^{1}$	1.058 ± 0.0006	1.058 ± 0.0006
$\mathrm{R}_{1}, \mathrm{R}_{2}\left(\text { back, } \mathrm{R}_{\odot}\right)^{1}$	1.154 ± 0.0007	1.154 ± 0.0007
${ }^{1}$ Using $a=2.76778 R_{\odot}$.		

Table 8. Estimated TX CMi absolute parameters. ${ }^{1}$

Parameter	Star 1	Star 2
Mean radius $\left(\mathrm{R}_{\odot}\right)$	1.071	1.071
Mean density	1.078	1.078
Mass $\left(\mathrm{M}_{\odot}\right)$	0.94	0.94
Log g	4.42	4.42

${ }^{l}$ Density units are $\mathrm{gm} / \mathrm{cm}^{3} \cdot a=$ semi-major axis.
(q~0.7). As with TX CMi, a q-search was instigated. The minima of the curve was very broad, with similar residuals between $\mathrm{q} \sim 0.4$ and $\mathrm{q} \sim 1.4$ and the very best goodness of fit residual was at a minima of $\mathrm{q}=1.1$. The q -search is shown in Figure 20. Again, convective parameters, $g=0.32, A=0.5$ were used. The $\mathrm{q}=1.1$ solution follows in Table 9. The system dimensions are given in Table 10 and absolute parameters in Table 11. The B, V, R, I normalized flux curves and B-V and R , I color curves overlain with the solutions are given in Figures 21 and 22. The geometric system representations at quadrature's are given in Figure 23.

10. Discussion

TX CMi is shallow contact W UMa binary. As stated earlier, the q-search minimized at 1.0 . The system's fill-out is 10%, and a component temperature difference is a $\sim 190 \mathrm{~K}$, so

Table 9. DW CMi Solution synthetic light curve parameters.

Parameter	Value
$\lambda_{\mathrm{B}}, \lambda_{\mathrm{V}}, \lambda_{\mathrm{R}}, \lambda_{\mathrm{I}}(\mathrm{nm})$	440, 550, 640, 790
$\mathrm{g}_{1}, \mathrm{~g}_{2}$	0.32
$\mathrm{A}_{1}, \mathrm{~A}_{2}$	0.5
Inclination (${ }^{\circ}$)	78.36 ± 0.08
$\mathrm{T}_{1}, \mathrm{~T}_{2}(\mathrm{~K})$	$5500,5244.4 \pm 1.8$
Ω	3.8864 ± 0.0034
$\mathrm{q}\left(\mathrm{m}_{2} / \mathrm{m}_{1}\right)$	1.100 ± 0.002
Fill-outs: $\mathrm{F}_{1}=\mathrm{F}_{2}$ (\%)	4.5
$\mathrm{L}_{1} /\left(\mathrm{L}_{1}+\mathrm{L}_{2}+\mathrm{L}_{3}\right)_{1}$	0.5202 ± 0.0006
$\mathrm{L} 1 /(\mathrm{L} 1+\mathrm{L} 2) \mathrm{R}$	0.5270 ± 0.0057
$\mathrm{L}_{1} /\left(\mathrm{L}_{1}+\mathrm{L}_{2}+\mathrm{L}_{3}\right)_{\mathrm{V}}$	0.5369 ± 0.0016
$\mathrm{L}_{1} /\left(\mathrm{L}_{1}+\mathrm{L}_{2}+\mathrm{L}_{3}\right)_{\mathrm{B}}$	0.5553 ± 0.0011
JD_{0} (days)	$2458868.67318 \pm 0.00011$
Period (days)	0.3075569 ± 0.000001
$\mathrm{r}_{1} / \mathrm{a}, \mathrm{r}_{2} / \mathrm{a}$ (pole)	$0.351 \pm 0.002,0.367 \pm 0.002$
$\mathrm{r}_{1} / \mathrm{a}, \mathrm{r}_{2} / \mathrm{a}$ (side)	$0.369 \pm 0.003,0.386 \pm 0.003$
$\mathrm{r}_{1} / \mathrm{a}, \mathrm{r}_{2} / \mathrm{a}$ (back)	$0.402 \pm 0.005,0.418 \pm 0.004$
Spots, Star 1	
Colatitude (${ }^{\circ}$)	119.8 ± 1.5
Longitude (${ }^{\circ}$)	306.6 ± 4.3
Spot radius (${ }^{\circ}$)	30.85 ± 1.01
T-factor	0.939 ± 0.003

Table 10. DW CMi system dimensions.

$\mathrm{R}_{1}, \mathrm{R}_{2}\left(\right.$ pole, $\left.\mathrm{R}_{\odot}\right)$	0.844 ± 0.006	0.882 ± 0.006
$\mathrm{R}_{1}, \mathrm{R}_{2}\left(\right.$ side, $\left.\mathrm{R}_{\odot}\right)$	0.887 ± 0.007	0.929 ± 0.007
$\mathrm{R}_{1}, \mathrm{R}_{2}\left(\right.$ back, $\left.\mathrm{R}_{\odot}\right)$	0.965 ± 0.011	1.010 ± 0.010

Table 11. DW CMi estimated absolute parameters. ${ }^{1}$

Parameter	Star 1	Star 2
Mean Radius $\left(\mathrm{R}_{\odot}\right)$	0.899	0.939
Mean Density	1.755	1.819
Mass $\left(\mathrm{M}_{\odot}\right)$	0.906	0.997
Log g	4.48	3.49
${ }^{I} a=$ semi-major axis. Density units are $\mathrm{gm} / \mathrm{cm}^{3}$.		

the stars are very similar in spectral type. One spot was needed in the solution, a Northern, 15° latitude, 20° radius spot with a t-fact of 0.78 . The inclination of ~ 86.9 degrees did not result in a time of constant light in due to the similar sizes of the components. Its photometric spectral type indicates a surface temperature of $\sim 5750 \mathrm{~K}$ for the primary component, making it a solar-type binary. Such a main sequence star would have a mass of $\sim 0.98 \mathrm{M}_{\odot}$ and the secondary (from the mass ratio) would have a mass of $\sim 0.965 \mathrm{M}_{\odot}$, making the stars nearly twins.

DW CMi is a shallow contact (4.5\%) W-type W UMa binary (if the $\mathrm{q}=1.1(0.002)$ solution is correct). The component temperature difference was about 255 K , which is reasonable for the shallow contact. The spot was a Southern cool spot with a t -fact of $0.938,-30^{\circ}$ latitude, 31° radius spot off the side of the L_{1} point. The inclination of ~ 78.4 degrees was not steep enough to allow total eclipses. Its photometric spectral type indicates a surface temperature of $5500 \pm 200 \mathrm{~K}$ for the

Table 12. Sample of first ten TX CMi B, V, R ${ }_{c}, I_{c}$ observations.

ΔB	$\begin{gathered} H J D \\ 2458800+ \end{gathered}$	ΔV	$\begin{gathered} H J D \\ 2458800+ \end{gathered}$	ΔR	$\begin{gathered} H J D \\ 2458800+ \end{gathered}$	ΔI	$\begin{gathered} H J D \\ 2458800+ \end{gathered}$
-1.063	68.574	-1.100	68.577	-1.120	68.571	-1.064	68.572
-1.091	68.581	-1.101	68.584	-1.108	68.578	-1.073	68.579
-1.094	68.591	-1.094	68.594	-1.104	68.588	-1.082	68.589
-1.068	68.598	-1.080	68.601	-1.103	68.595	-1.099	68.596
-1.045	68.608	-1.050	68.610	-1.077	68.605	-1.072	68.606
-1.034	68.615	-1.040	68.618	-1.062	68.612	-1.090	68.613
-0.992	68.625	-0.993	68.628	-1.047	68.622	-1.013	68.623
-0.950	68.635	-0.927	68.637	-0.976	68.632	-0.969	68.632
-0.836	68.644	-0.819	68.647	-0.914	68.641	-0.894	68.642
-0.754	68.651	-0.736	68.654	-0.839	68.648	-0.815	68.649

Note: First ten data points of $T X$ CMi B, V, R_{c}, I_{c} observations.
The full table is available through the AAVSO ftp site at ftp://ftp.aavso.org/public/datasets/samec492-txcmi.txt (if necessary, copy and paste link into the address bar of a web browser).

Table 13. Sample of first ten DW CMi B, V, R ${ }_{c}$, I_{c} observations.

ΔB	$H J D$ $2458800+$	ΔV	$H J D$ $2458800+$	ΔR	$H J D$ $2458800+$	ΔI
$2458800+$						

Note: First ten data points of $T X$ CMi B, V, $R_{c^{\prime}} I_{c}$ observations.
The full table is available through the AAVSO ftp site at ftp://ftp.aavso.org/public/datasets/samec492-dwcmi.txt
(if necessary, copy and paste link into the address bar of a web browser).
primary component, making it a solar-type binary. Such a main sequence star would have a mass of $\sim 0.94 \mathrm{M}_{\odot}$ and the secondary (from the mass ratio) would have a mass of $\sim 1.03 \mathrm{M}_{\odot}$ making the secondary star over massive for its type and very similar to the primary component.

The period and epoch were used as iterating parameters for both of the solutions. One can see from the solution plots (Figures 17, 18, 21, and 22) that the data (phased with the linear ephemerides) fits th Wilson-Devinney phased solution plots very well.

11. Conclusions

The period is increasing for TX CMi with the mass ratio departing from unity so that the mass ratio becomes more extreme. We expect that this solar-type binary is undergoing magnetic braking and the binary will ultimately coalesce into a fast rotating late A-type single star. A spectroscopic radial velocity curve is needed to determine the actual mass ratio of the binary, but it is fairly assured that it is between $\mathrm{m}_{1} / \mathrm{m}_{2}=0.8$ and 1.2.

The period of DW CMi is decreasing. The occurrence of a spot and the period change does lend us to believe that the star is undergoing magnetic braking so we expect the future
scenario to be much like that stated for TX CMi. The mass ratio is less determinable, however, and could range as much as 0.55 to 1.40 . If q is >1.0, as the q -search gives, the system is a W-type W UMa binary (more massive star is the cooler one.) Radial velocity curves are very much needed to obtain the actual mass ratio and absolute (not relative) system parameters. Tables 8 and 12 give estimated parameters. Observations for DW CMi and TX CMi are given in Tables 13 and 14.

12. Acknowledgement

I wish to think the physics students from Appalachian State University that have helped with the observations.

References

Bradstreet, D. H., and Steelman, D. P. 2002, Bull. Amer. Astron. Soc., 34, 1224.
Brát, L., Zejda, L. M., and Svoboda, P. 2007, B.R.N.O. Contrib., No. 34, 1.
Caton, D., Samec, R., and Faulkner, D. 2021, Bull. Amer. Astron. Soc., 53, e-id 2021n1i339p24.
Dvorak, S. W. 2005, Inf. Bull. Var. Stars, No. 5603, 1.
Gessner, H. 1966, Veröff. Sternw. Sonneberg, 7, 61.

Hoffmeister, C. 1929, Mitt. Sternw. Sonneberg, 16, 1.
Hubscher, J. 2007, Inf. Bull. Var. Stars, No. 5802, 1.
Hubscher, J. 2015, Inf. Bull. Var. Stars, No. 6152, 1.
Hubscher, J., and Lehmann, P. B. 2015, Inf. Bull. Var. Stars, No. 6149, 1.
Hubscher, J., Lehmann, P. B., and Walter, F. 2012, Inf. Bull. Var. Stars, No. 6010, 1.
Hubscher, J., Paschke, A., and Walter, F. 2006, Inf. Bull. Var. Stars, No. 5731, 1.
Hubscher, J., and Walter, F. 2007, Inf. Bull. Var. Stars, No. 5761, 1.
Kochanek, C. S., et al., G. 2017, Publ. Astron. Soc. Pacific, 129, 104502.
Krajci, T. 2006, Inf. Bull. Var. Stars, No. 5690, 1.
Paschke, A. 1990, BBSAG Bull., No. 95, 6.
Paschke, A. 1992, BBSAG Bull., No. 102, 9.
Paschke, A. 1994, BBSAG Bull., No. 106, 7.
Paschke, A. 2003, in Diethelm, R., Inf. Bull. Var. Stars, No. 5438, 3.
Paschke, A. 2012, Open Eur. J. Var. Stars, 147, 1.
Pojmański, G. 2002, Acta. Astron., 52, 397.
Polster, J., Zejda, M., and Safar, J. 2005, Inf. Bull. Var. Stars, No. 5700, 10.

Polster, J., Zejda, M., and Safar, J. 2006, Inf. Bull. Var. Stars, No. 5700, 4.
Samec, R., Caton, D., Ray, J., Waddell, R., and Gentry, D. 2021, Bull. Amer. Astron. Soc., 53, e-id 2021n1i128p01.
Samolyk, G. 2010, J. Amer. Assoc. Var. Star Obs., 38, 85.
Samus N. N., Kazarovets E. V., Durlevich O. V., Kireeva N. N., and Pastukhova E. N. 2017, Astron. Rep., 61, 80 (General Catalogue of Variable Stars: Version GCVS 5.1, http://www.sai.msu.su/groups/cluster/gcvs/gcvs).
Shappee, B. J., et al. 2014, Astrophys. J., 788, 48.
van Hamme, W. V., and Wilson, R. E. 1998, Bull. Amer. Astron. Soc., 30, 1402.
Wilson, R. E. 1990, Astrophys. J., 356, 613.
Wilson, R. E. 1994, Publ. Astron. Soc. Pacific, 106, 921.
Wilson, R. E., and Devinney, E. J. 1971, Astrophys. J., 166, 605.

Zacharias, N., et al. 2010, Astron. J., 139, 2184.
Zejda, M. 2004, Inf. Bull. Var. Stars, No. 5583, 1.
Zejda, M., Mikulasek, Z., and Wolf, M. 2006, Inf. Bull. Var. Stars, No. 5741, 1.

