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Abstract  Multicolor photometric observations of the eclipsing binary LO UMa are presented. Photometric models were determined 
simultaneously from four sets of light curves using the Wilson-Devinney program. The results indicate LO UMa is a semidetached 
Algol type binary with a mass ratio of q = 0.62 and primary and secondary star spectral types of F9 and K8, respectively. Based 
on available times of minimum light, the O – C curves revealed a sinusoidal oscillation with a period of about 16.4 years and an 
amplitude of 0.0238 day. Two possible causes of the period variation were considered, changes in the quadrupole moment of the 
secondary star caused by magnetic activity (Applegate mechanism) and the light-time effect of a third body orbiting the binary. It 
was found that the most plausible explanation for the period oscillation is an unseen body, with a mass of no less than 1.55 M


, 

orbiting the binary. A main sequence star of this mass would be the dominant light source in the system. However, spectra and 
observed color do not support a star of this mass, nor did the photometric solution find any indication of third light. A massive 
non-radiating third body suggests a possible neutron star candidate.

1. Introduction

	 The variability of LO UMa (GSC 03002-00454) was 
discovered from two images taken with the 25-cm astrograph at 
Indiana University’s Goethe Link Observatory (Williams 2001). 
Using Harvard College Observatory patrol plates, combined 
with visual and CCD observations, it was evident this variable 
was an Algol-type eclipsing binary with a deep primary eclipse 
and an orbital period of 1.856 days (Baldwin et al. 2001). 
The ASAS-SN Variable Star Database gives a mean visual 
magnitude of 12.86 with a primary eclipse amplitude of 1.87 
(Jayasinghe et al. 2019; Shappee et al. 2014). The LAMOST 
DR5 catalog gives an effective temperature of 6018 K (Luo 
et al. 2015). There are several minima times available (48), but 
no precision multiband photometric observations have been 
published for this system.
	 In this paper, a photometric study of LO UMa is presented. 
The photometric observations and data reduction methods are 
presented in section 2. A period analysis is presented in section 3. 
Analysis of the light curves using the Wilson-Devinney (WD) 
model is presented in section 4. Discussion of the results is 
presented in section 5 and conclusions are presented in section 6.

2. Photometric observations

	 Multicolor photometric observations were acquired 
with a 0.36-m Ritchey-Chrétien robotic telescope located 
at the Waffelow Creek Observatory, Nacogdoches, Texas  
(https://obs.ejmj.net). A SBIG-STXL camera with a cooled 
KAF-6303E CCD (−20° C, 9 μm pixels) was used for imaging. 
Each night, images were obtained in four passbands: Johnson 
V and Sloan g', r', and i'. The observation dates and number of 
images acquired are shown in the Table 1 observation log. The 
images were calibrated using bias, dark, and flat frames. MIRA 
software (Mirametrics 2015) was used for image calibration 
and the ensemble differential aperture photometry of the light 
images. The locations of the comparison and check stars are 
shown in Figure 1, and Table 2 gives their coordinates and 
standard magnitudes. The standard magnitudes were taken from 

Table 1.  Observation log.

	 Filter	 Dates	 No. Nights	 No. Images

	 V, g', r', i'	 2021 Feb 22	 1	 66
	 V, g', r', i'	 2021 Mar 18, 19, 23, 28, 31	 5	 280
	 V, g', r', i'	 2021 Apr 1, 11, 18, 20, 21, 24	 6	 219
	 V, g', r', i'	 2021 May 2, 4, 5, 6,13	 5	 181

Figure 1. Finder chart for LO UMa (V), comparison stars (C1 and C2), and 
check (K) stars. This chart was generated by the AAVSO Variable Star Plotter 
(VSP; https://www.aavso.org/apps/vsp/).

the AAVSO Photometric All-Sky Survey database (APASS; 
Henden et al. 2015). The instrumental magnitudes were 
converted to standard magnitudes using the APASS comparison 
star magnitudes. The Heliocentric Julian Date (HJD) of each 
observation was converted to orbital phase (φ) using the 
following epoch and orbital period: T0 = 2459292.6600 and  
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Table 2. APASS comparison and check star magnitudes.

	 System	 R.A. (2000)	 Dec (2000)	 V	 g'	 r'	 i'
	 h	 °
	
	 LO UMa	 10.497760	 + 39.94108				  
	 GSC 03002-00277 (C1)	 10.498258	 + 39.95172	 13.227	 13.365	 13.105	 12.999
	 GSC 03002-00389 (C2)	 10.487341	 + 39.92442	 12.810	 13.149	 12.501	 12.240
	 GSC 03002-00145 (K)	 10.511830	 + 39.83925	 12.971	 13.289	 12.733	 12.509

	 Standard deviation of K-star magnitudes			    ± 0.009	   ± 0.010	 ± 0.008	 ± 0.016

Table 3. Average light curve properties.

	 Min I	 Min II	 Δ Mag.	 Max I	 Max II	 Δ Mag.	 Mag. Range
	 Mag.	 Mag.	 Min II – Min I	 Mag.	 Mag.	 Max II – Max I	 Max II – Min I

	 V	 14.731 ± 0.012	 12.844 ± 0.003	  –1.887 ± 0.012	 12.675 ± 0.003	 12.672 ± 0.003	  –0.003 ± 0.004	   2.059 ± 0.012
	 g'	 15.255 ± 0.008	 13.055 ± 0.006	  –2.200 ± 0.010	 12.910 ± 0.012	 12.907 ± 0.004	  –0.004 ± 0.013	   2.348 ± 0.009
	 r'	 14.264 ± 0.003	 12.652 ± 0.002	  –1.613 ± 0.003	 12.464 ± 0.002	 12.451 ± 0.001	  –0.014 ± 0.003	   1.814 ± 0.003
	 i'	 13.775 ± 0.003	 12.492 ± 0.002	  –1.283 ± 0.003	 12.253 ± 0.004	 12.237 ± 0.002	  –0.016 ± 0.005	   1.539 ± 0.003

Note: Primary total eclipse duration: ~54 minutes.

Figure 2. The folded CCD light curves in standard magnitudes. From top to bottom the passbands are i', r', V, and g'. In the same order, the bottom curves 
are the check-star magnitudes with offsets of +3.15, +3.15, +3.10, and +3.00 magnitudes, respectively. Error bars were omitted from the plotted points  
for clarity.
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minima were found using the Kwee and van Woerden (1956) 
method. In addition, SuperWASP data were identified with 
sufficient cadence and light curve quality, from which another 
four minima were determined. All the minima times have been 
collected in Table 4. The difference between the observed and 
predicted eclipse timings, the O – C1 residuals in Table 4, were 
calculated using Baldwin’s (2001) linear ephemeris:

HJD Min I = 2451603.7691 + 1.8559010 E.      (1)

These residuals are shown in Figure 3. Compared to the CCD 
minima, the photovisual and visual minima show a large 
amount of scatter (small dots and triangles in Figure 3). This 
is not unexpected given that each photovisual minima was 
determined from a single plate. These minima times occur at 
some point during the eclipse but not at mid-eclipse (Cycle 
Numbers: −14178 to −554, −63, −57). In addition, four of 
the visual minima covered only the ingress or the egress of a 
primary eclipse. The precision of the photovisual and most of 
the visual minima is unknown, since the standard errors were 
not provided.
	 A first attempt at a period analysis utilized only the CCD 
minima. Those observations are of higher accuracy and span 
21 years (1999−2021). A least-squares solution to the residuals 
of Equation 1 gives the following new linear ephemeris: 

Figure 3. The residuals calculated from the linear ephemeris of Equation 1. 
The dots are the photovisual minima, the triangles the visual, and the filled 
circles the CCD.

Figure 4. The top panel shows the residuals (filled circles) calculated from the 
linear ephemeris of Equation 1 using the CCD minima times from 1999–2021. 
The dashed line is the best–fit linear line from Equation 2. The bottom panel 
shows the residuals from the linear fit of Equation 2.

P = 1.8558690. Figure 2 shows the folded light curves plotted 
from orbital phase −0.6 to 0.6, with negative phase defined as 
(φ – 1). The nearly complete light curves required over two 
months of observations. The error of a single observation 
ranged from 7 to 23 mmag. The check star magnitudes were 
plotted and inspected each night, but no significant variability 
was found (see bottom of Figure 2). The standard deviations for 
all check star observations are listed in Table 2. The minimum 
light at primary eclipse for each passband was briefly constant, 
which confirms the total eclipse reported by Baldwin et al. 
(2001). The light curve properties for each passband are given 
in Table 3 (Min I, Min II, Max I, Max II, Δm, and total eclipse 
duration). The observations can be accessed from the AAVSO 
International Database (Kafka 2017).

3. Period study

	 A literature search located 42 minimum timings for this 
period study. From the current observations two new primary 

Figure 5. The Levenberg–Marquardt fit of the O–C residuals (filled circles) 
calculated from the updated linear ephemeris (Equation 2) using only the CCD 
minima times. In the top panel the dashed line shows the fit for a circular orbit 
(e = 0) for a supposed third body and the dotted (blue) line gives the quadratic fit 
from the residuals. The middle panel displays the total residuals after subtraction 
of both the upward parabolic change and the cyclic variation. The bottom panel 
shows the model fit after subtracting out the quadratic component.
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HJD Min I = 2451603.7777 (12) + 1.8558710 (8) E.  (2)

This ephemeris should be useful in predicting the times of future 
primary eclipses. The results of the linear fit are displayed in the 
O − C2 diagram of Figure 4 (top panel). The residuals plotted 
in the bottom panel provide information on any orbital period 
changes that may have occurred since 1999. Visual inspection 
of the residuals reveals possible sinusoidal and linear changes 
in the orbital period. A long-term linear change causes the O − C 
residuals to take on a parabolic shape, which is often attributed 
to mass transfer or angular momentum loss caused by magnetic 
braking. The cyclic variation may be the result of a third body 
orbiting the binary or magnetic activity of the stars. Each of 
these will be investigated in turn. 
	 The motion of the binary around the barycenter of a tertiary 
system causes an apparent periodic change in the binary’s orbital 
period. This results from the changing light travel time between 
Earth and the binary (Light-Time Effect or LITE). The period 
of the LITE oscillations corresponds to the orbital period of the 
binary and the tertiary component about their barycenter. An 
initial attempt to investigate both the parabolic and sinusoidal 
variations in the orbital period used the following equation:

HJD Min I = HJD0 + PE + QE2 + A sin (ωE + φ).    (3)

The computed result of the first three terms, HJD0 + PE + QE2, 
is the quadratic ephemeris where Q measures the long-term 
period change of the binary. The fourth term in Equation 3 is 
the time difference due to the binary’s orbital motion about 
the barycenter. In this model, the periodic oscillation should 
appear symmetrical, and the orbit of the tertiary component is 
circular (e = 0). The parameter values HJD0, P, Q, A, ω, and φ 
were determined using the Levenberg-Marquardt algorithm. The 
results (LITE-1) are displayed in Figure 5, and the calculated 
parameters are listed in column 2 of Table 5. The O − C3 diagram 
in Figure 5 shows a possible long-term increase in the orbital 
period of the binary (dotted line). The calculated quadradic 
coefficient, Q = 1.7 (2) × 10–9 d, measures this long-term change. 
The rate of period change since 1999 was calculated using the 
following equation:

	 dP	 2Q
—— = —— · 365.24.              (4)

	 dt	 P

The orbital period appears to be increasing at a rate of 
7 (1) × 10–7 d yr–1 or about 6 seconds per century. The coefficient 
of the sine term, A = 0.0238 ± 0.0002 d, is the semi-amplitude 
of the oscillation. The period of oscillation was calculated using 
the following equation:

	 2πP
P3 = —— ,                    (5)

	 ω

where ω is the angular frequency and P the binary orbital 
period in days. The oscillation period, P3 = 13.36 ± 0.09 yr, is 
the orbital period of the binary and tertiary component about 
the barycenter. There are no additional periodic variations seen 
in the residuals (see center panel of Figure 5).
	 To analyze the possibility of a non-circular orbit, 
the sine term in Equation 3 was replaced with Irwin’s  

Table 4. Times of minima and O–C residuals. 

	 Method	 Epoch	 Error	 Cycle No.	 (O–C)1	 Ref.
		  HJD 2400000+	

	 pg	 25290.8130a	 —	 –14178.0	 0.00828	 1
	 pg	 27092.7970	 —	 –13207.0	 –0.08759	 1
	 pg	 27374.8840	 —	 –13055.0	 –0.09755	 1
	 pg	 27532.5880	 —	 –12970.0	 –0.14513	 1
	 pg	 28961.6550	 —	 –12200.0	 –0.12190	 1
	 pg	 29429.6550a	 —	 –11948.0	 0.19105	 1
	 pg	 31084.8640	 —	 –11056.0	 –0.06364	 1
	 pg	 34072.7740a	 —	 –9446.0	 –0.15425	 1
	 pg	 42485.7270	 —	 –4913.0	 –0.00049	 1
	 pg	 44996.7640	 —	 –3560.0	 0.00246	 1
	 pg	 45289.8920a	 —	 –3402.0	 –0.10190	 1
	 pg	 45757.7170	 —	 –3150.0	 0.03605	 1
	 pg	 46438.8100	 —	 –2783.0	 0.01338	 1
	 pg	 46492.6460	 —	 –2754.0	 0.02825	 1
	 pg	 46878.7120	 —	 –2546.0	 0.06685	 1
	 pg	 47264.6290a	 —	 –2338.0	 –0.04356	 1
	 pg	 49801.6510	 —	 –971.0	 –0.03823	 1
	 vis	 50545.8360	 —	 –570.0	 –0.06953	 2
	 vis	 50573.7300	 —	 –555.0	 –0.01404	 2
	 vis	 50575.5860	 —	 –554.0	 –0.01395	 2
	 ccd	 51273.4170	 —	 –178.0	 –0.00172	 3
	 vis	 51486.8850	 —	 –63.0	 0.03766	 2
	 vis	 51497.9350	 —	 –57.0	 –0.04774	 2
	 ccd	 51551.8020	 0.0030	 –28.0	 –0.00187	 2
	 ccd	 51603.7691	 0.0001	 0.0	 0.00000	 2
	 ccd	 51629.7502	 0.0002	 14.0	 –0.00151	 2
	 ccd	 51656.6670	 0.0020	 28.5	 0.00472	 2
	 vis	 52368.4080	 0.005	 412.0	 0.00769	 4
	 ccd	 52500.1707	 —	 483.0	 0.00142	 5
	 vis	 52691.3150	 —	 586.0	 –0.01209	 6
	 ccd	 53038.3828	 0.0002	 773.0	 0.00223	 7
	 vis	 53049.5470	 0.0090	 779.0	 0.03102	 8
	 ccd	 53157.1601	 0.0010	 837.0	 0.00186	 7
	 vis	 53409.5750	 0.0070	 973.0	 0.01423	 9
	 ccd	 54103.6577b	 0.0001	 1347.0	 –0.01008	 10
	 ccd	 54142.6287b	 0.0001	 1368.0	 –0.01299	 10
	 ccd	 54155.6204b	 0.0001	 1375.0	 –0.01261	 10
	 ccd	 54170.4710b	 0.0001	 1383.0	 –0.00921	 10
	 ccd	 54562.0423	 —	 1594.0	 –0.03299	 11
	 ccd	 54860.8250	 0.0008	 1755.0	 –0.05035	 12
	 ccd	 54942.4844	 0.0004	 1799.0	 –0.05060	 13
	 ccd	 55259.8273	 0.0010	 1970.0	 –0.06677	 14
	 ccd	 55660.6883	 0.0003	 2186.0	 –0.08039	 15
	 ccd	 55953.9111	 0.0005	 2344.0	 –0.08994	 16
	 ccd	 56038.7184a	 0.0029	 2389.5	 0.27386	 16
	 ccd	 56744.5178	 0.0003	 2770.0	 –0.09707	 17
	 ccd	 59292.6600	 0.0003	 4143.0	 –0.10693	 18
	 ccd	 59305.6511	 0.0002	 4150.0	 –0.10720	 18

(a) CCD outlier not used in the period analysis. (b) Minima determined from 
SuperWASP data. References: (1) Williams (2001); (2) Baldwin et al. (2001); 
(3) Paschke and Brat (2021); (4) Locher et al. (2002); (5) Kreiner (2004); 
(6) Diethelm (2003); (7) Krajci (2005); (8) Diethelm (2004); (9) Locher 
(2005); (10) Butters et al. (2010); (11) Nagai (2009); (12) Diethelm (2009); 
(13) Hübscher et al. (2010); (14) Diethelm (2010); (15) Diethelm (2011); 
(16) Diethelm (2012); (17) Hübscher (2015); (18) This paper.

(1959) formula: 

	 a12 sin i3HJD (Min)) = HJD0 + PE + QE2 + ————
	 c

	 ⌈	 1 – e2	 ⌉
	 ⌊	

———— sin (ν + ω) + e sin ω
	⌋ 

.	 (6)
	 1 + e cos ν
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Figure 6. The simplex fit of the O – C residuals (filled circles) calculated from 
the updated linear ephemeris (Equation 2) using only CCD minima times. In 
the top panel the dashed line shows the fit for an elliptical orbit (e = 0.42) for 
a supposed third body and the dotted (blue) line defines the quadratic fit from 
the residuals. The middle panel displays the total residuals after subtraction of 
both the upward parabolic change and the cyclic variation. The bottom panel 
shows the model fit after subtracting out the quadratic component. 

Figure 7. The simplex fit of the O – C residuals (dots) calculated from 
the Equation 1 linear ephemeris using all available minima times (CCD, 
photovisual, and visual). In the top panel the dashed line shows the fit for an 
elliptical orbit (e = 0.47) for a supposed third body and the dotted (blue) line 
defines the quadratic fit from the residuals. The bottom panel displays the total 
residuals remaining after LITE analysis.

Table 5. Parameters of the tertiary component.

	 CCD minima only	 All minima
	 Parameter	 LITE 1	 LITE 2	 LITE 3

	JD0 [HJD]	 2451603.7887 (5)	 2451603.777 (7)	 2451603.763 (5)
	P [day]	 1.8558600 (8)	 1.855873 (4)	 1.855882 (2)
	P3 [yr]	 13.36 (9)	 16.4 (3)	 18.6 (3)
	T0 [HJD]	 —	 2454529 (81)	 2454771 (403)
	ω [°]	 —	 159 (5)	 177 (19)
	e	 0	 0.42 (4)	 0.47 (33)
	A3 [day]	 0.0238 (2)	 0.0238 (8)	 0.0273 (5)
	a12 sin i3 [a.u.]	 4.4 (1)	 4.5 (1)	 5.4 (9)
	f (M3) [M

]	 0.39 (1)	 0.33 (3)	 0.45 (7)
	M3 (i = 90°) [M


]	 1.68 (3)	 1.55 (6)	 1.8 (2)

	M3 (i = 60°) [M


]	 2.09 (4)	 1.91 (7)	 2.2 (2)
	M3 (i = 30°) [M


]	 5.5 (9)	 4.9 (2)	 6.0 (7)

	
	Q [day] [10–9]	 1.734 (2)	 –1.1518 (8)	 –2.1414 (3)
	dP/dt [10–7 d/y]	 7 (1)	 –4.534 (3)	 –8.429 (1)

	Sum Res2	 0.00154	 0.00063	 —

Table 6. Results derived from light-curve modeling.

	 Parameter	 No Spots	 Spots

	 i (°)	 85.96 ± 0.12	 86.02 ± 0.09
	 T1 (K)	 60181	 60181 
	 T2 (K)	 3975 ± 9	 3980 ± 4  
	 Ω1	 4.963 ± 0.017	 4.959 ± 0.013
	 Ω2	 3.1072	 3.0912

	 q (M2 / M1)	 0.624 ± 0.003	 0.615 ± 0.002
	 L1 / (L1 + L2) (V)	 0.8135 ± 0.0009	 0.8130 ± 0.0006
	 L1 / (L1 + L2) (g')	 0.8555 ± 0.0007	 0.8550 ± 0.0007
	 L1 / (L1 + L2) (r')	 0.7718 ± 0.0010	 0.7714 ± 0.0006
	 L1 / (L1 + L2) (i')	 0.7062 ± 0.0013	 0.7060 ± 0.0009
	 r1 side	 0.2255 ± 0.0008	 0.2280 ± 0.0007
	 r2 side	 0.3330 ± 0.0004	 0.3304 ± 0.0003
	 Residuals	 0.00070	 0.00040

	 Star 1		   Hot Spot

	 co-latitude (°)	 —	 85 ± 12
	 longitude (°)	 —	 24 ± 2
	 spot radius (°)	 —	 10 ± 5
	 temp. factor 	 —	 1.06 ± 0.06

	 Star 1		  Cool Spot

	 co-latitude (°)	 —	 120 ± 6
	 longitude (°)	 —	 288 ± 3
	 spot radius (°)	 —	 15 ± 9
	 temp. factor 	 —	 0.92 ± 0.11

	 Star 2		  Hot Spot

	 co-latitude (°)	 —	 76 ± 3
	 longitude (°)	 —	 13 ± 2
	 spot radius (°)	 —	 12 ± 4
	 temp. factor 	 —	 1.16 ± 0.06

Note: The errors in the stellar parameters result from the least–squares fit to the 
model. The actual uncertainties are considerably larger. The subscripts 1 and 2 
refer to the star being eclipsed at primary and secondary minimum, respectively.
1Assumed. 2Calculated.
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The tertiary component’s associated orbital parameters for 
this term include the orbital period P3, inclination i3, orbital 
eccentricity e, amplitude A = a12 sin i3, argument of periastron 
ω, and time of periastron passage T0. A simplex optimization 
was used to solve for the parameters using the MATLAB code 
written by Zasche et al. (2009). The initial parameter values 
were taken from the LITE-1 solution. The results (LITE-2) are 
listed in column 3 of Table 5 and are displayed in Figure 6. This 
solution gave a better fit, with a 41% reduction in residuals, 
compared to a circular orbit solution (LITE-1). To include 
information from the photovisual and visual minima times 
dating back to 1933, a third LITE solution (LITE-3) was 
attempted. This solution utilized most of the minima timings in 
Table 4 (photovisual, visual, and CCD), with only a few outliers 
excluded (Cycles −14178, −11948, −9446, −3402, and −2338). 
An arbitrary weighting scheme was applied, with w = 10 for 
CCD and w = 1 for photovisual and visual minima. The initial 
parameter values were taken from the LITE-2 solution. The 
results are tabulated in column 4 of Table 5 and displayed in 
Figure 7. The tertiary component masses listed in Table 5 were 
derived for each LITE solution using the mass function of the 
third body and the fitted parameters A = a12 sin i3 and P3. The 
mass function is given by: 

	 (M3 sin i3)
3	 4π2

f (M3) = —————— = —— (a12 sin i3)
3 ,      (7)

	 (M1 + M2 + M3)
2	 GP3

2

where G is the gravitational constant, M1 = 1.10 ± 0.11 M


, 
and M2 = 0.68 ± 0.07 M


 (see section 5 for binary component 

masses). The minimum mass occurs when the orbit of the 
tertiary component is co-planar with the binary’s orbit (i3 = 90°). 
For each LITE solution, Table 5 lists the values for the mass 
function f(m), the semimajor axis of the binary’s orbit about 
the barycenter (a12 sin i3), and the tertiary masses for inclinations 
of 30°, 60°, and 90°. The tertiary component’s minimum mass 
ranged from 1.6 M


 to 1.8 M


 for the three LITE solutions. 

Main sequence stars in this mass range would have approximate 
luminosities of 7–9 L


 and temperatures from 7200 K to 7600 K. 

The observed color and the LAMOST spectra do not support 
a star of this temperature in the system. A tertiary component 
of this luminosity would also greatly reduce the eclipse depths 
and would result in large third-light values (l3) during Roche 

Table 7. Provisional absolute parameters.

	 Parameter	 Symbol	 Value

	 Stellar masses	 M1 (M
)	 1.10 ± 0.11

		  M2 (M
)	 0.68 ± 0.07

	 Semi–major axis	 a (R


)	 7.7 ± 0.2
	 Mean stellar radii	 R1 (R

)	 1.78 ± 0.08 
		  R2 (R

)	 2.60 ± 0.09
	 Bolometric magnitude	 Mbol,1	 3.3 ± 0.1
		  Mbol,2	 4.3 ± 0.4
	 Stellar luminosity	 L1 (L

)	 3.7 ± 0.4
		  L2 (L

)	 1.5 ± 0.4
	 Surface gravity	 log g1 (cgs)	 3.98 ± 0.05
		  log g2 (cgs)	 3.44 ± 0.05

Note: The calculated values in this table are provisional. Radial velocity 
observations are necessary for direct determination of M1, M2, and a.

modeling. The results of the LITE solutions will be discussed 
further in section 5.
	 Alternate explanations for a modulated orbital period include 
magnetic cycles in late-type stars and apsidal motion. Algol 
binaries with short orbital periods (< 6 days) have circular orbits 
and are tidally locked, thus making apsidal motion unlikely as 
the cause of period modulation (Qian et al. 2018). The period 
changes may be caused by the Applegate mechanism, which 
postulates a change in the gravitational quadrupole moment 
of the binary’s magnetically active secondary star (Applegate 
1992; Lanza and Rodonò 1999; Völschow et al. 2016). This 
change is caused by the redistribution of angular momentum 
within the star due to the magnetic activity. To drive a period 
oscillation, a certain amount of energy is required to build a 
strong magnetic field. Eventually this field is dissipated, only to 
be built and dissipated again in a hydromagnetic dynamo cycle. 
A detailed investigation of the energetics (ΔE / Esec) was done 
by Völschow et al. (2016). The ratio ΔE / Esec gives the energy 
necessary to drive the Applegate mechanism over the available 
energy produced by the magnetically active secondary star. This 
quantity determines the feasibility of the Applegate mechanism 
for LO UMa. The assessment of this mechanism for driving 
the period variations used Völschow et al.’s (2016) analytical 
two-zone model with different densities for the secondary’s 
core and its convective shell. The ΔE / Esec value was calculated 
using the “Eclipsing Time Variation Calculator” web module  
(http://theory-starformation-group.cl/applegate/index.php; 
Völschow et al. 2016). The module requires the following 
measured quantities for the calculation: the secondary star’s 
mass (Msec), radius (Rsec), and temperature (Tsec); the semimajor 
axis of the binary (abin); and ΔP / Pbin, which is given by:

	 ΔP	 Ao – c—— = 2π ——– .                  (8)
	 Pbin	 Pmod

Figure 8. Light curve of the binned Sloan r' passband observations in standard 
magnitudes (top panel). The observations were binned with a phase width of 
0.0067. The errors for each binned point are about the size of the plotted points. 
The (g' – r') colors (bottom panel) were calculated by subtracting the linearly 
interpolated binned g' and r' magnitudes.
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The calculations for this approximation used parameter values 
from each LITE solution and stellar parameters from Table 7 (see 
section 5). The resulting ΔE / Esec values for LITE-1, LITE-2,  
and LITE-3 were 3.7, 1.9, and 1.7, respectively. In each case 
the relative threshold energy is greater than unity, indicating the 
energy necessary to drive the period oscillations is greater than 
the total energy generated by the secondary star. This implies 
the period modulation cannot be explained by the secondary 
star’s magnetic activity. The period of modulation (Pmod) can 
also be estimated using the empirical relationship derived by 
Lanza and Rodonò (1999): 

log Pmod = −0.36 (± 0.10) log Ω + 0.018,        (9)

where Ω = 2π  ⁄  P, Pmod is in years, and P is in seconds. Equation 9 
predicts a modulation period of about 40 years, which is much 
longer than the values found in the LITE analysis (13.4–18.6 
years). This result also indicates magnetic activity is unlikely 
the cause of the period modulation.

4. Light curve analysis

4.1. Color, temperature, spectral type, absolute magnitude, and 
luminosity
	 For measuring color change and Roche modeling, the large 
number of photometric observations was binned in both phase 
and magnitude. This resulted in 150 points for each color with 
a phase width of 0.0067. The phases and magnitudes of the 
observations in each bin were averaged. For color index, the 
binned r' magnitudes were then subtracted from the linearly 
interpolated g' magnitudes. The binned points of the r' light 
curve and the (g' – r') color index are shown in Figure 8. The 
large color change during primary eclipse indicates a significant 
temperature difference between the primary and secondary 
stars. The average observed color over the entire phase range 
is (g' – r') = 0.479 ± 0.010. The color excess for this system, 
E(g' – r') = 0.020 ± 0.015, was determined from dust maps based 
on Pan-STARRS1 and 2MASS photometry and Gaia parallaxes 
(Green et al. 2018). Subtracting the color excess from the 
average observed color gives an intrinsic color of (g' – r')o =  
0.46 ± 0.02.
	 The LAMOST spectral survey DR5 catalog gives an 
effective temperature of Teff = 6018 ± 34 K for LO UMa’s primary 
star (Luo et al. 2015). The LAMOST pipeline measures the 
spectra as single stars even though in the case of Algol binaries, 
there are two stars of different temperatures. There are subtle 
differences between the spectra of Algol binaries and single 
stars (Qian et al. 2018). This results in a small systematic bias 
of less than 200 K in the effective temperature. For stars with 
temperature differences larger than 1000 K, as is the case for 
LO UMa, the systematic biases are even smaller. The effective 
temperature’s error was set to ± 100 K to account for this bias. 
The observed color index can also be used to estimate the 
effective temperature. The dereddened color at orbital phase 
φ = 0.5 is (g' – r') = 0.379 ± 0.016. At this orbital phase, the 
secondary star’s contribution to the total light is at a minimum. 
The effective temperature for this color, Teff = 6055 ± 106 K, was 
interpolated from Table 5 of Pecaut and Mamajek (2013). The 

effective temperatures from both methods are consistent, giving 
a spectral type of F9 for the primary star.
	 The absolute visual magnitude at quadrature (φ = 0.75), 
Mv = 2.94 ± 0.06, was calculated using the Gaia distance and the 
apparent visual magnitude corrected for extinction. Using the 
bolometric correction for the effective temperature gives the 
combined luminosity of both stars, L12 = 5.5 ± 0.3 L


 (Pecaut 

and Mamajek 2013).

4.2. Synthetic light curve modeling
	 Simultaneous four-color light curve solutions were obtained 
using the 2015 version of the Wilson-Devinney (WD) program 
(Wilson and Devinney 1971; van Hamme and Wilson 1998). 
The input data consisted of 150 normal points for each color (see 
section 4.1). The normal points were converted from magnitudes 
to flux, with each point assigned a weight equal to the number 
of observations forming that point.
	 The light curves (see Figure 2) display a deep primary 
minimum that is briefly total, a shallow secondary minimum, 
and small brightness changes outside of eclipses. This light 
curve morphology is typical of an Algol binary where there 
are large temperature differences between the component stars. 
Algols are binaries that are often detached with spherical or 
slightly elliptical components, but some are semidetached with 
one star filling its Roche lobe. Not knowing the configuration of 
this system, the WD program was initially configured to Mode-2 
for detached binaries. The primary star’s effective temperature 
was fixed at T1 = 6018 K (see section 4.1). The subscripts 1 and 2 
refer to the hotter and cooler components, respectively. With 
both component temperatures less than 7500 K, internal energy 
transfer to the surface is due to convection rather than radiative 
transfer. Standard convective parameters were used: gravity 
brightening, g1 = g2 = 0.32 (Lucy 1968) and bolometric albedo, 
A1 = A2 = 0.5 (Ruciński 1969). Logarithmic limb-darkening 
coefficients were calculated by the program from tabulated 
values using the method of van Hamme (1993). The adjustable 
parameters include the inclination (i), mass ratio (q = M2 / M1), 
potentials (Ω1, Ω2), temperature of the secondary star (T2), 
band-specific luminosity for each wavelength (L), and third 
light (l). Given the evidence for a possible tertiary component 
(see section 3), third light was included from the beginning and 
throughout the solution process.
	 Preliminary fits to each light curve were made using the 
binary maker 3.0 program (BM3; Bradstreet and Steelman 
2002). The primary star’s temperature was set to 6018 K, 
standard convective parameters were used, and limb-darkening 
coefficients were taken from van Hamme’s (1993) tabular values. 
The other parameters—inclination, mass ratio, potentials, and 
secondary star temperature—were adjusted in sequence until a 
good fit was obtained between the synthetic light curves and the 
observations for each passband. The parameters from the BM3 
synthetic light curve fits were then averaged and used as the 
inputs for the computation of simultaneous four-color light curve 
solutions with the WD program. The Mode-2 iterations quickly 
converged to a semidetached configuration. Subsequent runs 
and solutions used Mode-5, in which the secondary potential 
(Ω2) was no longer adjustable. A preliminary WD solution was 
completed using the Kurucz (2002) stellar atmosphere radiation 
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Figure 9. Comparison between the WD spotless best-fit model (solid curve) and 
the observed normalized flux curve. From top to bottom, the passbands are i', r', 
g', and V. Each light curve is offset by 0.25 for this combined plot. The residuals 
are shown in the bottom panel. Error bars are omitted from the points for clarity.

Figure 10. Comparison between the WD spotted best-fit model (solid curve) 
and the observed normalized flux curve. From top to bottom, the passbands 
are i', r', g', and V. Each light curve is offset by 0.25 for this combined plot. 
The residuals are shown in the bottom panel. Error bars are omitted from the 
points for clarity.

formulas, but this solution resulted in poor fits to the g'- and V- 
band observations. The final solution iterations were performed 
using blackbody radiation formulas, which resulted in better fits 
in all four passbands. The best-fit final solution parameters are 
shown in column 2 of Table 6. Figure 9 displays the normalized 
light curves overlaid by the synthetic solution curves (solid 
line), with the residuals in the bottom panel. Spectroscopic 
observations are not available to verify the mass ratio (q) 
found in this solution, but the total primary eclipses provide the 
necessary constraints for a reliable value (Wilson 1978; Terrell 
and Wilson 2005). Throughout the solution iteration process, the 
third-light corrections were negligibly small and often negative.

4.3. Spot model
	 The light curve asymmetries seen in Figure 9 are usually 
attributed to magnetic activity that causes cool spots or hot 
regions (faculae) in the star’s photosphere. In Algol systems, 
a gas stream from the donor star can also form a hot spot on 
its companion from impact heating. The residuals in Figure 9 
show the same asymmetries in all four colors: a small loss 
of light between orbital phases 0.05 and 0.30 and two small 
peaks of excess light at phases 0.40 and 0.60. To model 
these asymmetries, several different spot configurations were 
modeled using the BM3 program. The spot parameters, latitude, 

longitude, spot size, and temperature were adjusted until 
asymmetries were minimized. The process was repeated 
several times using different numbers of spots (1 to 3) and 
spot configurations until the asymmetries and residuals were 
minimized. The best-fit parameter values were then incorporated 
into a new WD model. The final spotted model resulted in a 
much-improved fit, with a 57% reduction in residuals compared 
to the spotless model. This model is not definitive; other 
spot configurations may give equal or better results. It does 
indicate that the light curve asymmetries are likely caused by 
star spots and that the stars are magnetically active. The final 
spotted solution parameters are shown in column 3 of Table 6. 
Figure 10 displays the spotted model fit (solid lines) overlaid 
on the observed light curves. Figure 11 shows a graphical 
representation of LO UMa created using BM3 (Bradstreet and 
Steelman 2002).

5. Discussion

	 The provisional absolute orbital and stellar parameters 
for each star can be determined with knowledge of one of the 
star’s masses and the mass ratio. There are no spectroscopic 
observations currently available to directly determine the stellar 
masses, but the primaries in Algol systems are typically main 
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The total system luminosity, L12 = 5.2 ± 0.7 L


, is in good 
agreement with the value calculated in section 4.1 using 
observed quantities, 5.5 ± 0.3 L


. All the provisional stellar 

parameter values are collected in Table 7. The distance modulus 
gives a distance of 853 ± 145 pc, which is consistent with 
the Gaia distance of 86318

14 pc (Bailer-Jones et al. 2021; Gaia 
2016, 2018). In Figure 12, the provisional radii and masses of 
LO UMa are compared with the values from 62 semi-detached 
systems with well-determined absolute parameters (Ibanoğlu 
et al. 2006). The zero-age main sequence lines (ZAMS) and 
the terminal-age main sequence (TAMS) lines are displayed 
in Figure 12 as well. The primary component of LO UMa 
(triangle point) has one of the lowest masses of this group and 
a larger radius compared to a ZAMS star of the same mass. 
The secondary component (diamond point) is located above 
the TAMS line indicating an evolved star.
	 In the period study (see section 2), the parameter values 
of the three LITE solutions are comparable, but there was one 
significant difference. The LITE-2 solution gave an orbital 
eccentricity of e = 0.42 ± 0.04 and a period of P3 = 16.4 ± 0.03 y 
for the tertiary component. LITE-3 gave similar values, with 
e = 0.47 ± 0.33 and P3 = 18.6 ± 0.3 y. These eccentricity values 
differ by only 11%, but the error in LITE-3 is very large, as is the 
error for the time of periastron passage (T0 = 2454771 ± 403 HJD). 
The large errors are likely the result of the sparse coverage, 
large data gaps, and the lower accuracy of the minima timings 
from the years 1939−1999. The main difference between the 
LITE solutions concerns the long-term period change given by 
the quadratic coefficient term (Q). Its value was positive for 
the LITE-1 solution but negative for LITE-2 and LITE-3. In a 
close semidetached Algol binary, conservative mass exchange 
from the less massive Roche-lobe-filling component to the 
more massive star always causes an increase in orbital period 
(Q > 0). Matter transferred through the inner Lagrangian point 

Figure 11. Roche Lobe surfaces of the best–fit WD spot model showing spot 
locations. The orbital phase is shown next to each diagram.

sequence stars. The mass of those stars can be estimated from 
their spectral type. The primary’s mass, M1 = 1.10 ± 0.11 M


, 

was interpolated from Table 5 of Pecaut and Mamajek (2013) 
using its effective temperature. This mass, combined with 
the spotted WD solution mass ratio, gives a secondary mass 
of M2 = 0.68 ± 0.07 M


. Applying Kepler’s Third Law gives 

the distance between the mass centers as 7.7 ± 0.2 R


. The 
bolometric magnitudes, radii, and surface gravities of the stars 
were calculated by the WD light curve program (LC). The 
stellar luminosities, L1 = 3.7 ± 0.4 L


 and L2 = 1.5 ± 0.4 L


, were 

computed using the LC bolometric magnitudes in the following 
equation:

	 LMbol = 4.74 – 2.5 log  (—–).            (10)
	 L



Figure 12. Positions of both components of LO UMa on the Mass-Radius 
diagram of 62 semidetached Algol systems with well-determined parameters. 
Closed circles are the primary stars and open circles the secondary stars. The 
triangle and the diamond are the primary and the secondary of LO UMa, 
respectively. Solid and dotted lines refer to ZAMS and TAMS, respectively 
(Tout et al. 1996).



Michaels,  JAAVSO Volume 49, 2021230

may hit the primary star, causing impact heating, or miss the 
primary and form a gaseous disk around the star. The distance 
separating the component stars (Aorb) and the radius of the 
primary determine which one of these configurations occurs. 
The minimum primary-star radius required for the formation 
of a gaseous disk was calculated from an empirical relationship 
derived by Nanouris et al. (2015):

Rmin = (0.04930 + 0.03387 log q + 0.05915 (log q)2)Aorb , (11)

where q is the mass ratio. The resulting value, Rmin =  
0.345 ± 0.002 R


, is much smaller than the estimated radius for 

this star (1.78 R


). This means the matter stream would collide 
with the primary star. The hot spot modeled on the side of the 
primary star facing the secondary suggests mass transfer is 
presently active. The downward parabolic O − C diagrams found 
in the LITE-2 and LITE-3 solutions suggest just the opposite 
of LITE-1: the orbital period is decreasing (Q < 0; see Figures 6 
and 7). This implies a nonconservative mass-loss process, 
which is usually attributed to magnetic braking caused by a 
coupling between the magnetic field and stellar winds in low-
mass stars. The spots found in the light curve solution support 
current magnetic activity on both stars. This non-conservative 
mass loss would remove orbital angular momentum from the 
system, leading to a downward parabolic O – C curve and a long-
term decrease in the orbital period. In a comprehensive study 
on the efficiency of O – C diagrams for diagnosing long-term 
period changes, it was found that a combination of the mass 
transfer process and wind-driven mass loss may be at work in 
close binaries (Nanouris et al. 2011, 2015; Erdem and Öztürk 
2014). In semidetached systems, these two mechanisms may be 
strongly competitive. Based on the LITE-2 solution, the period 
of LO UMa is decreasing at a rate of 4.5 × 10–7 d yr–1, or 4 seconds 
per century. The LITE-3 solution, with its much longer temporal 
base (82 years), also supports a decreasing orbital period. 
	 The period modulation found in the O – C residuals was 
presented as evidence for a third body orbiting the system’s 
barycenter. Cyclical orbital-period variation in binary systems 
is common; it is observed in 49% of Algols and 64% of W-UMa 
systems (Liao and Qian 2010). The sinusoidal-like behavior 
found in the period analysis of LO UMa is mostly supported by 
CCD minima timings collected over the past 21 years. This time 
interval is less than two cycles of the proposed orbital period 
(P3). This third-body hypothesis should therefore be considered 
preliminary. Another 10–15 years of precision minimum 
times will be necessary to confirm that the period modulation 
is continuing as predicted and thus to prove the existence of 
the tertiary component. Those future observations could also 
confirm that the binary’s orbital period is decreasing and reduce 
the errors in the orbital parameters. The LITE solutions indicate 
the tertiary component has a minimum mass between 1.6 M


 

and 1.8 M


, yet the light curve solutions found no evidence of 
excess luminosity (l3 = 0). A main sequence star of this mass 
would have a spectral type of F0, but the LAMOST spectra 
gives an F9 spectral type that is consistent with the observed 
color. A massive orbiting object not emitting normal stellar 
radiation would suggest that it is a noninteracting compact 
stellar object. With the minimum mass above the Chandrasekhar 

limit of ~_1.4 M


, the tertiary component would most likely be 
a neutron star. If the orbit has a high inclination i3, a black hole 
is also possible. The LITE-2 solution gives periastron distance 
between this object and the binary of 5.6 ± 0.4 AU (i3 = 90°) 
and an apastron distance of 13.7 ± 0.4 AU. The barycenter 
is almost equally distant between the binary and the tertiary 
object. A compact object of this mass and distance would play 
a significant role in the evolution of this system.

6. Conclusions

	 Multiband CCD photometric observations collected in V, 
g', r', and i' bands resulted in the first precision light curves for 
LO UMa and two new minimum times for primary eclipse. The 
light curves displayed deep total primary eclipse and shallow 
secondary eclipse. Light curve modeling with the WD program 
found the binary configuration to be semidetached, with primary 
and secondary stars of spectral types F9 and K8, respectively. 
Three spots were included in the final Roche model to address 
light curve asymmetries: a cool spot and a hot spot on the 
primary star and a single hot spot on the secondary star. This 
spotting is an indication of magnetically active stars. The linear 
ephemeris was updated using CCD minima timing observations 
from the years 1999–2021. A detailed analysis of the O – C 
diagram found the orbital period of LO UMa is undergoing a 
sinusoidal variation superimposed on a downward parabolic 
change. The downward parabolic change indicates that the 
orbital period of the binary is decreasing due to a combination 
of magnetic braking and mass transfer. Two possible causes for 
the period modulation were investigated: the existence of an 
object of significant mass that is gravitationally bound to the 
binary and the Applegate effect. The Applegate mechanism 
requires a certain amount of energy to build a strong magnetic 
field to drive a dynamo cycle that causes the period variations. 
Calculations showed the energy available from the secondary 
star was insufficient to drive the Applegate mechanism. The 
results of the LITE analysis showed that an object orbiting in 
either a circular or an elliptical revolution would explain the 
period modulation. The best-fit LITE solution gave the third 
body’s orbital eccentricity as 0.42 and its minimum mass as 
1.6 M


. Given this mass, the object is hypothesized to be a 

neutron star. 
	 LO UMa is an interesting system worthy of additional study. 
A spectroscopic study would be particularly useful to gain a 
better understanding of this binary system. Radial velocity 
measurements are needed to pin down the individual masses 
and separation distance of the binary stars. Velocity changes 
in the binary’s barycenter could provide supporting evidence 
for the unseen companion. Spectroscopy could also check the 
metallicity of the binary stars for possible contamination from a 
supernova which would have formed the neutron star. Precision 
CCD minima timings over many years will be very important 
in confirming the third body and the decreasing orbital period 
of the binary.
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