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Abstract

Two types of irreqular behavior in semiregular variables,
labeled randomness and chaos, are described and the results
of recent theoretical explorations are illustrated. The
need for precise long-term observations to distinguish
between multi-periodic and irregular pulsations in
semiregular variables is emphasized.
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1. Introduction

Like the categories of cats and dogs, the semiregular variable
stars encompass a wide variety of types. For the most part, they are
easy to recognize but not so easy to describe or to define in words
alone. Their light varies continuously in a way that may appear to be
reqgular for a while but soon strays from the predicted pattern. The

Catalogue of Variable Stars (Rukarkin et al. 1969) describes
the class as consisting of:

"...giants or supergiants possessing an appreciable
periodicity, accompanied, or at times disturbed, by various
irregularities in the light variations. The periods of the
semiregular variables range in extremely wide limits - from
about 30 to 1000 days or more. The forms of the light
curves are extremely diverse; the amplitudes usually do not
exceed 1 - 2 magnitudes.”

Probably the best known of the semirequlars are Alpha Orionis and
Mu Cephei, light curves of which are shown in Figure 1. Mu Cep has
been under surveillance since 1848. Its amplitude is fairly small
(typically 0.4 magnitude visually) and for reasons that I will
describe, this small amplitude creates a major uncertainty in our
understanding of such stars. A long-term photoelectric program on
semiregular stars - stretching over several years or a decade - would
pay large dividends.

For a given observational error, a star with a smaller amplitude
will, of course, have a larger relative error in its light curve than
will a star with a larger amplitude. The shape of its light curve and
its periodicity, or lack of periodicity, will be less well defined. 1If
the star were known to be regular, as is the case with many eclipsing
variables, it would be possible to take the average of observations
spread over many cycles and derive a light curve whose precision is far
greater than the precision of the individual observations. However,
most of the cooler intrinsic variables do not behave in this regqular
manner; each cycle is unique. Improved curves will only come with
improved precision in each measurement. In the case of the
semirequlars, this improved accuracy is crucial because the choice of
an explanation for the variability depends on what is known about the
detailed nature of its irregularity.

This situation is rather unusual in variable star work. In the
past, improved accuracy has usually done little beyond providing a more

precise quantitative model. For example, an improved period for a
Cepheid will give better estimates of its density and its brightness,
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and an improved light curve for an eclipsing binary will give a better
determination of its radius. The nature of the model is not affected,
merely its dimensions. However, in the case of the semiregulars,
improved accuracy in the observations may determine the nature of the
model, and it may swing the balance between two competing physical
theories. 1In other words, it may change our point of view.

2. Types of Pulsational Behavior

Two types of behavior may be found among the pulsating stars:
periodic and irregular.

The classical Cepheids are, with a few interesting exceptions,
well-behaved examples of gingly-periodic stars whose periods may change
slightly over the course of time but whose futures are highly
predictable. The theory of stellar pulsation has explained these stars
as self-excited oscillators behaving very much like pendulum clocks.
In a clock, gravitational energy from the descending weight is
converted to oscillation energy by the action of an escapement. 1In a
Cepheid, heat energy leaking outward from the region of nuclear burning
is converted to pulsation energy by an "escapement"” in the outer
envelope. The star swings in and out with a well-defined period, much
as a pendulum's period is determined by its length. Unlike a simple
pendulum, a star can vibrate in more than one pattern at a given time,
and some stars show two superimposed periods. For example, many of the
RR Lyrae stars show "beats"™ that can be described as the interaction of
two simultaneous modes of oscillation.

The ringing of a bell is a more useful analogy than a pendulum.
When a bell is struck by its clapper, a variety of "overtones" is
excited and instead of oscillating in a simple pattern with a single
frequency, the bell usually vibrates in several superimposed patterns.
Each pattern is a "mode," and each mode has a characteristic frequency.
(This analogy was popular in the early days of spectroscopy, when the
emission of colored light by atoms was often compared with the
radiation of musical notes by a bell.) The bell's pitch is determined
by the weight and shape of the bell as well as the stiffness of the
metal. The musical quality of the sound is determined by the amount of
sound energy that is radiated in the overtones, and the strength of the
overtones depends on the detailed shape of the bell and the position of
thre clapper.

The spectrum of sound can be used to analyze the bell, and in the
same way the frequencies of multi-periodic stars are clues to interior
structure. Thus the light curves of such stars are particularly
interesting. They are just as predictable as the light curves of
singly-periodic stars, although the prediction is more complicated (but
not essentially so), because more terms must be added together to
represent the light curve. 1If the periods are incommensurate and not
related as in a rational fraction (such as 22/7), the curve may never
repeat.

The light curves of irregular variables, on the other hand, cannot
be represented by a finite equation, and they are as unpredictable as,
say, next month's weather. The question is not simply one of not having
enough data. Some phenomena are inherently unpredictable over finite
time intervals, even with the most sophisticated methods of modern
mathematics and with the largest computer that can be imagined. The
flow of smoke from a chimney and the rippling of water on the surface
of a stream are two such phenomena. NoO matter now many measurements
are made, their patterns will be elusive. The fact that even with
global satellites weather forecasts made more than three days ahead
seem no more reliable now than they were several decades ago is a
result of this inherent irregularity. All the data in the world will
not prevent our being misled by a disturbance that may have been too
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small to be measured on one day but grows until it dominates the
weather a few days later.

3. Causes of Irregular Variations

There are two types of physical explanations for irregqular
behavior: randomness and chaos. As an example of "randomness," a
random process is one in which the events are largely independent of
each other, such as the flipping of a coin. The only consistent
properties of such events are statistical ones, such as the tendency
for equal numbers of heads and tails and the absence of long runs of
either heads or tails. If a periodic pattern seems to be emerging, it
will soon disappear, and it is impossible to make detailed predictions
of long-range or short-range patterns with complete certainty.

A physical example of this randomness is the pattern of sound
generated by raindrops on a roof. Each drop falls independently of the
others and the resulting pattern has local regions in which more than
the average number accumulate and other areas which are hit by fewer
than average. The random pattern of the impacts generates a random
array of sound waves that is irreqular and virtually impossible to
predict. A crucial point is that the pattern of noise generated by
rain does not tell us much about the roof; it tells us about the
pattern of the raindrops. In a similar way, the variations of certain
types of stars may be the response of their atmospheres to random hits
from below, such as would be produced by the boiling motion known as
convection. If this is the case, then the patterns may not tell us
much about the star as a whole, but only about the nature of the
convection.

[

The second type of irregular behavior is called "chaos," and
during the past two decades the discussions of chaos in physics and
mathematics have shown that it is a remarkably common process. The
physical origin of chaos is difficult to describe, although the result
is not difficult to recognize. The turbulent pattern of smoke rising
from a chimney and the eddies in a trout stream are examples of chaotic
motion. They are described not as the results of random hits but
rather as the result of internal processes that occur when motions
become exaggerated - when things get out of hand, so to speak.
Epidemics of a disease or fads in clothing are examples of exaggerated
behavior, and erratic swings in population among competing species in
nature is another. These changes are not simply the summation of many
small changes; they reflect a collective and cooperative behavior.
This behavior is called "non-linear" in the jargon of mathematics
because the forces acting in such systems are highly curved, rather
than linear, functions of the state of the system. The study of chaos
is focused on the study of non-linear equations.

A further example of chaotic motion may be obtained by suspending
a pendulum on a swivel that permits it to swing in a complete circle.
If we tap the pendulum gently it will oscillate back and forth
periodically, and once we have measured the period we can predict its
path quite accurately for a long time. The motions will damp out after
a while, and our prediction will gradually become less and less
accurate unless we take the damping into account. We can do this by
measuring the amplitude from time to time and exploiting these
measurements in our prediction.

Suppose, however, that we kick the pendulum so that it swings
higher and higher until, finally, it swings almost to the top of the
circle, hesitates a moment, and then swings down again. The length of
the pause at the top of the swing is sensitively dependent on the speed
at the bottom of the swing and the strength of the kick. If the
pendulum persists in swinging nearly to the top, we will find it
extremely difficult to predict its behavior. That is, we will have a
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hard time guessing when the pendulum will reach the bottom, say, two or
three swings later. This difficulty is produced by the forces acting
on the pendulum near the top - they are non-linear and produce erratic
behavior. Notice that this erratic behavior is not generated by the
randomness of the kicks; it can occur even when the kicks are as
uniform as we can make them. The circular pendulum swinging with just
the right amplitude is inherently unstable. Slight differences in the
conditions in one cycle can make a large difference in the next cycle,
just as a slight difference in the weather one day can be multiplied
into a large difference in a day or two.

Returning to the semiregular stars, the irregularity of their
oscillations may be like that of the pendulum - not a consequence of
random jostles but of forces acting inside the star to produce unstable
motions. This is the distinction between the sources of irregular
behavior.

L. Perdang and S. Blacher (1982) carried out an important
theoretical study of chaotic behavior in simplified models for
pulsating stars. They pointed out that astronomers have been
preoccupied with regular, periodic behavior, while many variables do
not fit this mold, and they showed that it may be possible to explain
erratic behavior without resorting to randomness. Figure 2, taken from
their paper, shows the irreqular oscillations of one of their models.
Such chaos is common when the amplitude of the motion exceeds a
critical value, as it does for the circular pendulum.

Before developing a theory for a variable star, it is essential to
decide which of these behaviors describes the star.

4. The Status of Mu Cephei

The first question is, are the semiregular stars multi-periodic
or irregular and truly unpredictable? If they are found to be
irregular we would proceed to the next question, namely, is this
behavior produced by a random pattern of hits or is it caused by an
internal chaos?

For Mu Cep, the first question has been answered both ways in the
past several decades, and that is why more data are needed now. Thirty
years ago a study by J. Ashbrook, R. Duncombe, and A. J. J. van Woerkom
(1954) concluded that the light curve of Mu Cep could be constructed by
a process of random jolts followed by quickly damped oscillations, as
indicated in Figure 3. Without providing a detailed physical picture,
they decided that the light variation is "not explained by a simple
pulsation; instead it may be interpreted as arising from temporary,
random surface disturbances on the star." The brightness fluctuations
of the solar atmosphere, observable as "granulation,"” may provide a
model for such disturbances. These fluctuations are generally thought
to be produced by turbulent motions in the outer layers of the sun and
may look like the rising of a plume of hot air above an open fire or a
chimney. Most stars are expected to show such fluctuations, some more
strongly than others.

Oon the basis of the early study by Ashbrook and his collaborators,
it seemed for many years that Mu Cep was an irregqgular star, responding
to random disturbances. However, in 1966 this interpretation was
questioned, and a recent study has in fact reversed the earlier
conclusion. L. Mantegazza has shown (1982) that, rather than following
a completely chaotic behavior, Mu Cep may be multi-periodic, with two
basic frequencies and about a dozen harmonics and combination tones.
The periods of the basic frequencies are not related in any simple way
(that is, they are incommensurate) so that the curve does not repeat,
but is predictable and can be extended into the future as in a Fourier
analysis. A sample of the light curve and the quality of fitting it
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with two curves of different complexity are shown in Figure 4
(Mantegazza 1982). The prediction seems quite good in the lower
example but this test alone does not prove that Mu Cep is multi-
periodic, because random or chaotic behavior can imitate multi-periodic
behavior “roughened"” by observational errors.

The observational distinction is a subtle one even though the
physical difference is large, and until the data are adequate to decide
whether Mu Cep is truly irregular or is multi-periodic no theory for
such stars can be considered proven. Regular observations at intervals

of a week and with a precision of 0.01 magnitude over a period of a
decade or so would probably answer this intriguing question.
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Figure 1. Observed light curves of Alpha Orionis and

Mu Cephei from Yariable Stars, Payne-Gaposchkin and
Gaposchkin.
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F%gure 2. Chaotic velocity curve generated by a
51mp1q non-linear oscillator model for stellar
pulsation from Perdang and Blacher (1982).

Figure 3. Typical light curve generated by
the random process described by Ashbrook et
al.(1954). Each point on the curve is
computed from the preceding two points and
a random pulse, e, according to the
relationship: m(t) = 1.664m(t-1) -
0.759m(t-2) + e.In this expression, m(t-1)
is the magnitude at the previous time-step.
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Figure 4. Top - brightness data for Mu Cephei;

middle - synthetic light curve based on
superimposition of the fundamental and six
harmonics; bottom - synthesis using the entire

spectrum. From Mantegazza (1982).
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