JAAVSO
 Volume 45
 Number 1
 2017

The Journal of the American Association of Variable Star Observers

Photometric Analysis of HD 213616: a Multi-modal δ Scuti Variable Star

Light curve of HD 213616 from the first four nights of observation.

Also in this issue...

- Photometric Analysis of Three ROTSE Contact Binary Systems
- The VESPA Survey: 100 New Variable Stars Discovered in Two Years
- Studies of the Long Secondary Periods in Pulsating Red Giants. II. Lower-Luminosity Stars
- Southern Clusters for Standardizing CCD Photometry

Complete table of contents inside...

The Journal of the American Association of Variable Star Observers

Editor
John R. Percy
Dunlap Institute of Astronomy and Astrophysics
and University of Toronto
Toronto, Ontario, Canada
Associate Editor
Elizabeth O. Waagen
Production Editor
Michael Saladyga
Editorial Board
Geoffrey C. Clayton
Louisiana State University
Baton Rouge, Louisiana
Zhibin Dai
Yunnan Observatories
Kunming City, Yunnan, China

Kosmas Gazeas
University of Athens
Athens, Greece

Edward F. Guinan
Villanova University
Villanova, Pennsylvania

John B. Hearnshaw
University of Canterbury
Christchurch, New Zealand

Laszlo L. Kiss
Konkoly Observatory
Budapest, Hungary
Katrien Kolenberg
Universities of Antwerp
and of Leuven, Belgium
and Harvard-Smithsonian Center
for Astrophysics
Cambridge, Massachusetts

Ulisse Munari
INAF/Astronomical Observatory of Padua
Asiago, Italy

Nikolaus Vogt
Universidad de Valparaiso
Valparaiso, Chile

Douglas L. Welch
McMaster University
Hamilton, Ontario, Canada

David B. Williams
Whitestown, Indiana
Thomas R. Williams
Houston, Texas
Lee Anne M. Willson
Iowa State University
Ames, Iowa

The Council of the American Association of Variable Star Observers 2016-2017

Director	Stella Kafka
President	Kristine Larsen
Past President	Jennifer L. Sokoloski
1st Vice President	Roger S. Kolman
2nd Vice President	Kevin B. Marvel
Secretary	Gary Walker
Treasurer	Bill Goff

Councilors
Richard Berry Katrien Kolenberg Tom Calderwood Richard S. Post

Joyce A. Guzik Gregory R. Sivakoff
Michael Joner William Stein

JAAVSO

The Journal of
The American Association of Variable Star Observers

Volume 45
Number 1
2017

Publication Schedule

The Journal of the American Association of Variable Star Observers is published twice a year, June 15 (Number 1 of the volume) and December 15 (Number 2 of the volume). The submission window for inclusion in the next issue of JAAVSO closes six weeks before the publication date. A manuscript will be added to the table of contents for an issue when it has been fully accepted for publication upon successful completion of the referee process; these articles will be available online prior to the publication date. An author may not specify in which issue of JAAVSO a manuscript is to be published; accepted manuscripts will be published in the next available issue, except under extraordinary circumstances.

Page Charges

Page charges are waived for Members of the AAVSO. Publication of unsolicited manuscripts in JAAVSO requires a page charge of US $\$ 100 /$ page for the final printed manuscript. Page charge waivers may be provided under certain circumstances.

Publication in JAAVSO

With the exception of abstracts of papers presented at AAVSO meetings, papers submitted to JAAVSO are peer-reviewed by individuals knowledgable about the topic being discussed. We cannot guarantee that all submissions to JAAVSO will be published, but we encourage authors of all experience levels and in all fields related to variable star astronomy and the AAVSO to submit manuscripts. We especially encourage students and other mentees of researchers affiliated with the AAVSO to submit results of their completed research.

Subscriptions

Institutions and Libraries may subscribe to JAAVSO as part of the Complete Publications Package or as an individual subscription. Individuals may purchase printed copies of recent JAAVSO issues via Createspace. Paper copies of JAAVSO issues prior to volume 36 are available in limited quantities directly from AAVSO Headquarters; please contact the AAVSO for available issues.

Instructions for Submissions

The Journal of the AAVSO welcomes papers from all persons concerned with the study of variable stars and topics specifically related to variability. All manuscripts should be written in a style designed to provide clear expositions of the topic. Contributors are encouraged to submit digitized text in MS WORD, LATEX+POSTSCRIPT, or plain-text format. Manuscripts may be mailed electronically to journal@aavso.org or submitted by postal mail to JAAVSO, 49 Bay State Road, Cambridge, MA 02138, USA.

Manuscripts must be submitted according to the following guidelines, or they will be returned to the author for correction:
Manuscripts must be: 1) original, unpublished material;
2) written in English;
3) accompanied by an abstract of no more than 100 words.
4) not more than 2,500-3,000 words in length (10-12 pages double-spaced).

Figures for publication must: 1) be camera-ready or in a high-contrast, high-resolution, standard digitized image format;
2) have all coordinates labeled with division marks on all four sides;
3) be accompanied by a caption that clearly explains all symbols and significance, so that the reader can understand the figure without reference to the text.

Maximum published figure space is $4.5^{\prime \prime}$ by $7^{\prime \prime}$. When submitting original figures, be sure to allow for reduction in size by making all symbols, letters, and division marks sufficiently large.

Photographs and halftone images will be considered for publication if they directly illustrate the text.
Tables should be: 1) provided separate from the main body of the text;
2) numbered sequentially and referred to by Arabic number in the text, e.g., Table 1.

References: 1) References should relate directly to the text.
2) References should be keyed into the text with the author's last name and the year of publication,
e.g., (Smith 1974; Jones 1974) or Smith (1974) and Jones (1974).
3) In the case of three or more joint authors, the text reference should be written as follows: (Smith et al. 1976).
4) All references must be listed at the end of the text in alphabetical order by the author's last name and the year of publication, according to the following format: Brown, J., and Green, E. B. 1974, Astrophys. J., 200, 765. Thomas, K. 1982, Phys. Rep., 33, 96.
5) Abbreviations used in references should be based on recent issues of JAAVSO or the listing provided at the beginning of Astronomy and Astrophysics Abstracts (Springer-Verlag).

Miscellaneous: 1) Equations should be written on a separate line and given a sequential Arabic number in parentheses near the right-hand margin. Equations should be referred to in the text as, e.g., equation (1).
2) Magnitude will be assumed to be visual unless otherwise specified.
3) Manuscripts may be submitted to referees for review without obligation of publication.

Online Access

Articles published in JAAVSO, and information for authors and referees may be found online at: https://www.aavso.org/apps/jaavso/
© 2017 The American Association of Variable Star Observers. All rights reserved.

The Journal of the American Association of Variable Star Observers Volume 45, Number 1, 2017

Editorial
Education and Public Outreach: Why and How John R. Percy 1
Variable Star Research
Photometric Analysis of the Solar Type, Totally Eclipsing, Southern, Near Critical Contact Binary, CW Sculptoris Ronald G Samec, Cody L. Norris, Bob L. Hill, Walter Van Hamme, Danny R. Faulkner 3
Photometric Analysis of Three ROTSE Contact Binary Systems Surjit S. Wadhwa 11
The VESPA Survey: 100 New Variable Stars Discovered in Two Years
Ulisse Quadri, Luca Strabla, Roberto Girelli 15
Studies of the Long Secondary Periods in Pulsating Red Giants. II. Lower-Luminosity Stars John R. Percy, Henry Wai-Hin Leung 30
High-Cadence B-Band Search for Optical Flares on CR Draconis
Gary A. Vander Haagen 36
Photometric Analysis of HD 213616: a Multi-modal δ Scuti Variable Star
Vance Petriew, Horace A. Smith 40
A Photometric Study of the Near-Contact Binary XZ Persei
Edward J. Michaels 43
Observation of a Deep Visual "Eclipse" in the WC9-Type Wolf-Rayet Star, WR 76
Rod Stubbings, Peredur Williams 57
HD 46487 is Now a Classical Be Star
David G. Whelan, R. David Baker 60
BVRI Photometry of SN 2016oj in NGC 4125
Michael Richmond, Brad Vietje 65
Instruments, Methods, and Techniques
Using Unfiltered Images to Perform Standard Filter Band Photometry Joe Garlitz 75
Southern Clusters for Standardizing CCD Photometry
Terry T. Moon 86
Digital Single Lens Reflex Photometry in White Light: a New Concept Tested on Data from the High Amplitude ס Scuti Star V703 Scorpii
Roy Andrew Axelsen 92
Inter-observer Photometric Consistency Using Optec Photometers Tom Calderwood, Jim Kay, Scott Burgess, Erwin van Ballegoij 99
Variable Star Data
Digitizing Olin Eggen's Card Database
Jack Crast, George Silvis 103
Recent Maxima of 82 Short Period Pulsating Stars
Gerard Samolyk 112
Visual Times of Maxima for Short Period Pulsating Stars I
Gerard Samolyk 116
Recent Minima of 298 Eclipsing Binary Stars
Gerard Samolyk 121
Abstracts of Papers and Posters Presented at the 105th Annual Meeting of the AAVSO, Held in Burlington, Massachusetts, November 10-12, 2016
The Crucial Role of Amateur-Professional Networks in the Golden Age of Large Surveys Joseph E. Rodriguez 126
The Transiting Exoplanet Survey Satellite Ryan J. Oelkers 126
Photometric Surveys (and Variability Studies) at the Observatorio Astrofísico de Javalambre Alessandro Ederoclite 126
The Role of Small Telescopes in the Upcoming Era of the Giant Magellan Telescope and Other Extremely Large Telescopes Charles Alcock 126
Big Software for Big Data: Scaling Up Photometry for LSST
Meredith Rawls 126
The Galactic Plane Exoplanet Survey (GPX)—an Amateur Designed Transiting Exoplanet Wide-Field Search Paul Benni 127
The AAVSO Photometric All-Sky Survey (APASS) at Data Release 10 Stephen Levine 127
Kepler and K2: Spawning a Revolution in Astrophysics from Exoplanets to Supernovae
David Ciardi 127
Exploration of the Time Domain
George Djorgovski 127
Clear-sky Forecasting for Variable Star Observers
Frank Dempsey 128
Cepheids and Miras: Recent Results and Prospects for the Era of Large Surveys
Lucas Macri 128
Gravitational Radiation in ES Ceti
Joseph Patterson 128
Observing the Low States of VY Scl Stars Linda Schmidtobreick 128
Advances in Exoplanet Observing by Amateur Astronomers
Dennis M. Conti 128
The Impact of Large Optical Surveys on Stellar Astronomy and Variable Star Research Zeljko Ivezic 129
Engaging AAVSO Members in Stellar Astrophysics Follow-up from The Evryscope Data
Octavi Fors, Nicholas M. Law, Jeffrey Ratzloff, Henry Corbett, Daniel del Ser, Ward Howard, Stephen Cox 129
Using AAVSO Tools to Calibrate Secondary Standard Stars Michael D. Joner 129
Solar Data in the J and H Bands Rodney Howe 129
Variations in the Orbital Light Curve of the Magnetic Cataclysmic Variable Star QQ Vulpeculae Sanaea Cooper Rose 130
Coast-to-Coast Photometry: A Study in Consistency
Tom Calderwood 130

Editorial

Education and Public Outreach: Why and How

John R. Percy
Editor-in-Chief, Journal of the AAVSO

Department of Astronomy and Astrophysics, and Dunlap Institute for Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4, Canada; john.percy@utoronto.ca

Received May 18, 2017

I've written a lot about education and public outreach (EPO), e.g. Percy $(2002,2012,2014)$. These papers are freely available on the website of the Journal of the Royal Astronomical Society of Canada. Why write again? Because I get the sense that, in some countries, science is under threat. Science is essential to our well-being-not just our economy, but our health, environment, and culture. Among the hallmarks of science, it promotes rational thinking and critical thinking, and evidencebased decision-making-all of which are essential, but often in short supply.

I am also motivated by having recently served on a panel on "Science Culture in Canada" at the 2017 conference of the Canadian Association of Science Centres. This panel arose from a comprehensive report on this topic (Council of Canadian Academies 2014). This report is freely available on-line; see the References section for the URL. If you don't have time to read the whole report, at least read the twelve-page Executive Summary. Among other things, it notes that Canada ranks very highly, internationally, on science engagement, highly on science knowledge and attitude to science, but less highly on the production of university graduates with science-related degrees.

An interesting recent development, discussed at a preconference meeting, is the creation of STEM "ecosystems" (STEM is an acronym for science, technology, engineering, and mathematics). A STEM ecosystem is a local partnership of organizations which provide formal or informal learning opportunities, especially for young people. In the last two years, over forty such partnerships have been created in the U.S. Vancouver has applied to be the first such ecosystem outside the U.S. There is much to be gained from partnership in public outreach (Percy 2012). For more information, see STEMEcosystems.org. Check it out! It has lessons for science culture everywhere.

Here in Canada, we are cautiously optimistic about the future of science in our country. A major report, "the Naylor report," was recently released by the federal goverment (Advisory Panel 2017); see References for the URL. David Naylor, who chaired the report panel, is an eminent medical scientist and former president of my university. Canada actually has a Minister of Science who is a scientist, and a Minister of Health who is a doctor (and a Minister of Transport who was an astronaut, and a Cabinet which is half women!).

Professional and amateur scientists can support and enhance science, and science culture, through EPO. Professional
scientists have an obligation to do so-to communicate the nature, importance, and excitement of their work to the publicbecause, for most of us, our salaries and research costs are paid by the taxpayer. For amateur scientists such as AAVSO observers, the motivation can be to support science, or simply to convey their passion to the public.

EPO comes in many forms: illustrated presentations, handson demonstrations, star parties, sidewalk astronomy, Boy Scout and Girl Scout badge workshops, school visits, observatory tours, and so forth.

If you have the opportunity to choose your EPO audience, don't just "preach to the converted." Seek out new audiences, large audiences, and especially underserved audiences. I'm currently doing a lot of school visits, but presentations to teachers are even higher-impact. I give presentations to later-life learners, to residents of retirement homes and even nursing homes-a growing demographic of taxpayers/voters who are interested in and supportive of astronomy, and of science in general. I give presentations in public libraries, because that gets me and astronomy out into the many communities across Toronto. I give presentations to school and university science and astronomy clubs-the scientists of the future. At the same time, I and my colleagues are investigating and joining partnerships that will connect us to underserved populations, such as inner-city youth, immigrants, and Aboriginal communities.

How to do it? Details are in the three papers referred to above; they are all available on ADS or on my outreach webpage http://www.astro.utoronto.ca/~percy/EPOindex.htm I have also summarized them on one page which you can find at:
http://www.astro.utoronto.ca/~percy/STEMoutreach.pdf
In short: you must decide whether your objective is to educate, inform, entertain, engage, inspire, recruit, fundraise, or just "sell your subject." Always consider the nature and needs of your audience. If your objective is to change the views of people with deep-seated misconceptions (such as the cause of the seasons), or deep-seated beliefs (such as young-Earth creationism), then special strategies are needed.

Then you have to decide what content, visuals, and demonstrations to include. Don't try to give a full course of astronomy in one hour. Just select highlights. Remember that you have to engage the audience, and leave a good impression of astronomy and astronomers.

Audience engagement will depend also on your delivery skills. Plan, organize, and rehearse. Be clear, concise, jargonfree, and enthusiastic. Be audible, and make your visuals visible. Leave lots of time for questions and answers.

Afterwards, reflect on your experience, and how it could be improved. In some outreach settings, a short, simple feedback questionnaire can be useful. If you have had success, make it known to your colleagues, and encourage them to do likewise.

JAAVSO welcomes papers on various aspects of EPO: examples which are unusually novel, efficient, or effective, especially if they are suited to new or underserved audiences. Papers which report on formal research on EPO are also welcome. For examples, go to the JAAVSO search site https:// www.aavso.org/apps/jaavso/search/ and choose the category "education and outreach" box to search. You will find 78 results!

References

Advisory Panel for the Review of Federal Support for Fundamental Science. 2017, Investing in Canada's Future: Strengthening the Foundations of Canadian Research (www.sciencereview.ca).
Council of Canadian Academies. 2014, Science Culture: Where Canada Stands (www.scienceadvice.ca/en/assessments/ completed/science-culture.aspx).
Percy, J. R. 2002, J. Roy. Astron. Soc. Canada, 96, 196.
Percy, J. R. 2012, J. Roy. Astron. Soc. Canada, 106, 240.
Percy, J. R. 2014, J. Roy. Astron. Soc. Canada, 108, 132.

Photometric Analysis of the Solar Type, Totally Eclipsing, Southern, Near Critical Contact Binary, CW Sculptoris

Ronald G. Samec
Cody L. Norris
Astronomy Group, Department of Natural Science, Emmanuel College, 181 Springs Street, P.O. Box 129, Franklin Springs, GA 30639; ronaldsamec@gmail.com; s.cln@ec.edu

Bob L. Hill
Astronomy Program, Department of Chemistry and Physics, Bob Jones University, 1700 Wade Hampton Boulevard, Greenville, SC 29614

Walter Van Hamme

Physics Department, Florida International University, 11200 SW 8th Street, Miami, FL 33199

Danny R. Faulkner

Johnson Observatory, 1414 Bur Oak Court, Hebron, KY 41048
Received October 31, 2016; revised December 5, 2016; accepted March 8, 2017

Abstract

CW Sculptoris is a solar type ($T_{1} \sim 5750 \mathrm{~K}$) eclipsing binary. It was observed in October and November 2014 at Cerro Tololo InterAmerican Observatory in remote mode with the $0.6-\mathrm{m}$ SARA South reflector. Three times of minimum light were calculated from our present observations, one secondary and two primary eclipses. In addition, six observations at minima were determined from archived All Sky Automated Survey Data. An increasing period was determined from all available times of minimum light with a $1.14 \pm 0.16 \times 10^{-10} \times \mathrm{E}^{2}$ quadratic term. A BVR I_{c} simultaneous Wilson-Devinney Program solution reveals that the system has a mass ratio of ~ 0.44, and a component temperature difference of $\sim 200 \mathrm{~K}$. The Roche Lobe fill-out is only 3%. This may indicate that the system has recently come into contact. The inclination is $\sim 84^{\circ}$. An eclipse duration of 19.5 minutes was determined for the primary eclipse.

1. Introduction

This paper represents the first precision and multicolor photometric study of CW Sculptoris, an interesting EW Southern, solar-type eclipsing binary.

2. History and observations

The variable, GSC 7517 0234, was observed by the All Sky Automated Survey (ASAS 232801-3359.8.; Pojmański 2002). In "Reports on New Discoveries" (Otero et al. 2004; http://www.astrouw.edu.pl/~gp/asas), it was designated as an EW binary, with magnitude range $12.13-12.87(\mathrm{~V})$ with the following ephemeris:

$$
\begin{equation*}
\mathrm{JD}=2452940.676+0.385588 \mathrm{~d} \tag{1}
\end{equation*}
$$

The ASAS data are plotted in Figure 1, phased with the period above. Six "times of low light" were determined from the ASAS plots by taking points of low light near the primary and secondary minima:

$$
\begin{aligned}
& \text { HJD Min I }=2452177.603,2452466.793,2454404.752 \text {, } \\
& \text { HJD Min II }=2453647.652,2454669.843,2455101.701 .
\end{aligned}
$$

The variable was included in the "Automated Variable Star Classification" using The Northern Sky Variability Survey and classified as an EW type (Hoffman et al. 2009).

Figure 1. CW Scl phase plot from ASAS data (Pojmański 2002).

CW Scl was included in the "80th Name List of Variable Stars" (Kazarovets et al. 2013).

This system was observed as a part of our student/ professional collaborative studies of interacting binaries from data taken from SARA observations. The observations were taken by Samec, Faulkner, Hill, and Van Hamme. Reduction and analyses were mostly done by Samec and Norris. The Observations were taken with the Southeastern Association for Research in Astronomy (SARA South) telescope at Cerro Tololo InterAmerican Observatory (CTIO) in remote mode. The 0.6 -meter $\mathrm{F} / 11$ reflector was used on four nights, 9,10 , 19 October, and 15 November 2014 with the ARC Camera

Table 1. Information on the stars used in this study.

Star	Name	R.A. (2000) $h m s$	$\begin{gathered} \text { Dec. (2000) } \\ \circ \end{gathered}$	V	$J-K$
V	SW Scl 3UC113-502395 GSC 07517-00234	232801.095	-33 $5951.75^{1,2}$	12.28	0.40
C	GSC 75170304 3UC112-498808	232747.540	-340551.67^{1}	13.26	0.46
K (Check)	GSC 75170049 3UC112-498812	232756.625	-340219.52^{1}	13.24	0.32

${ }^{1}$ UCAC3 (USNO 2012). ${ }^{2}$ USNO CCD Astrograph Catalog (Zacharias et al. 2012).

Figure 2a. CW Scl. B,V delta magnitudes and color curves taken on 9 October 2014.

Figure 2b. CW Scl. B,V delta magnitudes and color curves taken on 10 October 2014.
cooled to -110 C using BVR I_{c} Johnson/Cousins standard filters. Figures 2 a and 2 b give sample nightly curves in B, V delta magnitude and color magnitudes as a function of phase plots in the sense of V-C from 2014, October 9 and 10, respectively.

3. Positions and finding chart

The finding chart, given here for future observers, is shown as Figure 3. The coordinates and magnitudes of the variable star, comparison star, and check star are given in Table 1. The $\mathrm{C}-\mathrm{K}$ values stayed constant throughout the observing run with a nightly precision of $\mathrm{V}=6-7 \mathrm{mmag}$. Exposure times varied from $100-120 \mathrm{~s}$ in $\mathrm{B}, 50-75 \mathrm{~s}$ in V , and $40-60 \mathrm{~s}$ in R_{c} and I_{c}.

Figure 3. CW Scl finding chart. Variable (V), Comparison (C), and Check (K).

4. Period study

Three times of minimum light were calculated from our present observations, one secondary, and two primary eclipses:

$$
\begin{aligned}
\text { HJD Min } \mathrm{I}= & 2456939.60799 \pm 0.0002, \\
& 2456976.62450 \pm 0.0002 \\
\text { HJD Min II }= & 2456940.57227 \pm 0.0006 .
\end{aligned}
$$

In addition, six observations at minima were determined from archived All Sky Automated Survey data:

$$
\begin{aligned}
& \text { HJD Min I }=2452177.603,2452466.793,2454404.752 \text {, } \\
& \text { HJD Min II }=2453647.652,2454669.843,2455101.701 .
\end{aligned}
$$

The following linear and quadratic ephemerides were determined from all available times of minimum light:

$$
\begin{align*}
\text { JD Hel Min I }= & 2456976.6241 \pm 0.0005 \mathrm{~d} \\
& +0.38558774 \pm 0.00000008 \times \mathrm{E} \tag{2}
\end{align*}
$$

JD Hel Min I $=2456976.6246 \pm 0.0003 \mathrm{~d}$

$$
\begin{align*}
+0.38558897 & \pm 0.0002 \times \mathrm{E} \\
+0.000000000114 & \pm 0.000000000016 \times \mathrm{E} 2 \tag{3}
\end{align*}
$$

The $\mathrm{O}-\mathrm{C}$ curve shown in Figure 4 is a smoothly increasing quadratic over the course of 13.3 years and nearly 13,000 orbits. The table of $\mathrm{O}-\mathrm{C}$ residuals, both linear and quadratic calculations, are given in Table 2. In a conservative scenario, the period is increasing so the mass ratio is becoming more disparate,
where the more massive component is the gainer. According to the light curve solution the more massive component is presently 2.6 times that of the less massive one. The ephemeris yields a $\dot{\mathrm{P}}=3.03 \times 10^{-8} \mathrm{~d} / \mathrm{yr}$ or a mass exchange rate of

$$
\begin{equation*}
\frac{\mathrm{dM}}{\mathrm{dt}}=\frac{\dot{\mathrm{P}} \mathrm{M}_{1} \mathrm{M}_{2}}{3 \mathrm{P}\left(\mathrm{M}_{1}-\mathrm{M}_{2}\right)}=\frac{1.75 \times 10^{-8} \mathrm{M}_{\odot}}{\mathrm{d} .} \tag{4}
\end{equation*}
$$

It is commonly thought that the more massive component steadily absorbs the secondary during normal evolution. However, this short interval of increasing period in a solar type binary may be overcome by a secular period decrease due to magnetic braking. Alternatively, the curve seen in the O-C diagram may be a part of a sinusoidal oscillation due to a third body. More timings over a decade or more are needed to determine the actual nature of the current period change.

5. Light curves and temperature determination

The light curves were phased using Equation 2. These are given as Figures 5a and 5b. A table of light curve characteristics averaged at quadratures is given in Table 3. Photometry from the 2MASS All-Sky Catalog of Point Sources (2MASS; Skrutskie et al. 2006) gives J $-\mathrm{K}=0.40$. This is G5V, T $\sim 5750 \mathrm{~K}$ (Cox 2000).

We used this value for the primary component in our light curve solution. The curve is of 0.8% to 1.0% precision in $\mathrm{BVR}_{\mathrm{c}} \mathrm{I}_{c}$. The amplitudes of the light curves are $0.6-0.7$ in magnitude from I_{c} to B . The O^{\prime} Connell effect (magnitude difference in the maxima), classically thought of as an indicator of spot activity, is only $0.005-0.020$ magnitude in all filters, and the Wilson-Devinney program (wD; Wilson and Devinney 1971) needed no spots to solve the light curves. But night-tonight variations are occurring as seen in the light curves. The difference between the primary and secondary minima is only 0.03-0.04 magnitude, indicating a high degree of physical and thermal contact. The wD solution indicates that the system is of W-type (the more massive star is cooler), but night-to-night variations show that the minima may be essentially equal. We believe that rapidly varying spots are inducing this complication. The indications are that this is an active contact binary.

6. Synthetic light curve solution

The $\mathrm{B}, \mathrm{V}, \mathrm{R}_{\mathrm{c}}$, and I_{c} curves were carefully pre-modeled with binary maker 3.0 (Bradstreet and Steelman 2002) fits in all filter bands. The parameters were then averaged and input into a four-color simultaneous light curve calculation using the Wilson code (Wilson and Devinney 1971; Wilson 1990, 1994, 2001, 2004; Van Hamme and Wilson 1998; Van Hamme and Wilson 2003). These fits were all contact binaries, so the solution was computed in Mode 3 (the contact mode). Circular and gravitationally locked orbits are assumed. Convective parameters, $\mathrm{g}=0.32$, (Lucy 1967), $\mathrm{A}=0.5$ (Ruciński 1969), were used. Since the eclipses were total, no q-search was needed to have fair results (Terrell and Wilson 2005). However, the referee wisely noted since there had been no previous

Figure 4. CW Scl. Quadratic O-C residuals from the period study.
determinations or observations that one should be conducted. Because of the total eclipse we ran a limited q-search from 0.2 to 1.0. It is shown in Figure 6. The mass ratio minimized at $\mathrm{q} \sim 0.44$. Opening up the q -value along with all the other parameters, we determined a final solution. Third light was also tested, but only yielded both low order, positive and negative values, so it was abandoned. A geometrical representation of the system is given in Figures 7a, b, c, and d at quadratures so that the reader may visualize the configuration and relative size of the stars as compared to the orbit. The synthetic light curve solution is given in Table 4. The normalized curves overlaid by our light curve solutions are shown as Figures 8a and 8b.

7. Conclusion

CW Scl is a moderate period, $\mathrm{P}=0.38558897$ (8)d W UMa eclipsing binary. The thirteen-year orbital study reveals an increasing quadratic ephemeris, which indicates that the binary's mass ratio is steadily becoming more extreme. 2MASS photometry gives a temperature for the primary component of $\sim 5750 \mathrm{~K}$ for this G5V type variable. The Wilson-Devinney Program solution gives a mass ratio of ~ 0.4, and a component temperature difference of $\sim 200 \mathrm{~K}$. The system is probably magnetically active and the curve's night-to-night variation is on the order of $\mathrm{V} \sim 0.05$ magnitude, as easily seen in the eclipse curve. The Roche Lobe fill-out is only 3% for this near critical contact binary. The inclination is 84° so that it is totally eclipsing, with an eclipse duration of ~ 19.5 minutes. The W UMa binary is of W-type (the less massive component is slightly hotter). This is the usual case for shallow contact binaries. It is thought to be due to the prevalence of spots on the larger component.

Further eclipse timings are need to affirm the orbital evolution found here. We finally note that radial velocity curves are needed to obtain absolute (not relative) system parameters.

8. Acknowledgements

We wish to thank the Southeastern Association for Research in Astronomy for allocation of observing time, and the Department of Natural Science, Emmanuel College for encouraging us to continue this undergraduate research.

Figure 5a. CW Scl. B,V delta magnitude and color magnitudes vs. phase plots in the sense of $\mathrm{V}-\mathrm{C}$.

Figure 5b. CW Scl. R_{c}, Ic delta magnitude and color magnitudes vs. phase plots in the sense of $\mathrm{V}-\mathrm{C}$.

Figure 6. Q-search for CW Scl. The search minimizes at $\mathrm{q} \sim 0.44$.

Figure 7. a: Roche Lobe surfaces from our BVRI solution, phase 0.00 (the primary eclipse). b: Roche Lobe surfaces from our BVRI solution, phase 0.25 . c: Roche Lobe surfaces from our BVRI solution, phase 0.50. d: Roche Lobe surfaces from our BVRI solution, phase 0.75 .

Figure 8 a . B,V synthetic light curve solutions overlaying the normalized flux curves.

Figure 8b. Rc,Ic synthetic light curve solutions overlaying the normalized flux curves.

References

Bradstreet, D. H., and Steelman, D. P. 2002, Bull. Amer. Astron. Soc., 34, 1224.
Cox, A. N., ed. 2000, Allen's Astrophysical Quantities, 4th ed., Springer, New York.
Hoffman, D. I., Harrison, T. E., and McNamara, B. J. A. 2009, Astron. J., 138, 466.
Kazarovets, E. V., Samus, N. N., Durlevich, O. V., Kireeva, N. N., and Pastukhova, E. N., 2013, Inf. Bull. Var. Stars, No. 6052, 1.
Lucy, L. B. 1967, Z. Astrophys., 65, 89.
Otero, S. A., Greaves, J., Wils, P., and Pojmański, G. 2004, Inf. Bull. Var. Stars, No. 5600, 4.
Pojmański, G. 2002, Acta Astron., 52, 397.
Ruciński, S. M. 1969, Acta Astron., 19, 245.
Skrutskie, M. F., et al. 2006, Astron. J., 131, 1163.
Terrell, D., and Wilson, R. E. 2005, Astrophys. Space Sci., 296, 221.
U.S. Naval Observatory. 2012, UCAC-3 (http://www.usno.navy. mil/USNO/astrometry/optical-IR-prod/ucac). [VizieR Online Data Catalog: I/315]
Van Hamme, W. V., and Wilson, R. E. 1998, Bull. Amer. Astron. Soc., 30, 1402.
Van Hamme, W., and Wilson, R. E. 2003, in GAIA Spectroscopy, Science and Technology, ed. U. Munari, ASP Conf. Ser. 298, Astronomical Society of the Pacific, San Francisco, 323.
Wilson, R. E. 1990, Astrophys. J., 356, 613.
Wilson, R. E. 1994, Publ. Astron. Soc. Pacific, 106, 921.
Wilson, R. E. 2001, Inf. Bull. Var. Stars, No. 5076, 1.
Wilson, R. E. 2004, New Astron. Rev., 48, 695.
Wilson, R. E., and Devinney, E. J. 1971, Astrophys. J., 166, 605.

Zacharias, N., Finch, C. T., Girard, T. M., Henden, A., Bartlett, J. L., Monet, D. G., and Zacharias, M. I. 2012, The Fourth U.S. Naval Observatory CCD Astrograph Catalog (UCAC4), VizieR On-line Data Catalog (http://cdsarc.u-strasbg.fr/viz-bin/Cat?I/322).

Table 2. CW Scl observations $\Delta \mathrm{B}, \Delta \mathrm{V}, \Delta \mathrm{R}$, and $\Delta \mathrm{I}$, variable minus comparison star (Epoch 2400000+).

ΔB	$\begin{gathered} H J D \\ 2456930+ \end{gathered}$	ΔB	$\begin{gathered} H J D \\ 2456930+ \end{gathered}$	ΔB	$\begin{gathered} H J D \\ 2456930+ \end{gathered}$	ΔB	$\begin{gathered} H J D \\ 2456930+ \end{gathered}$	ΔB	$\begin{gathered} H J D \\ 2456930+ \end{gathered}$
-1.187	9.4950	-1.001	9.6455	-1.138	10.5169	-1.201	10.6523	-1.059	46.5727
-1.205	9.5014	-1.029	9.6498	-1.121	10.5208	-1.226	10.6562	-1.023	46.5797
-1.217	9.5065	-1.084	9.6542	-1.095	10.5246	-1.221	10.6601	-0.971	46.5848
-1.206	9.5108	-1.076	9.6585	-1.071	10.5285	-1.219	10.6639	-0.910	46.5908
-1.215	9.5152	-1.108	9.6628	-1.040	10.5323	-1.220	10.6678	-0.837	46.5959
-1.213	9.5195	-1.156	9.6732	-1.007	10.5362	-1.218	10.6717	-0.765	46.6002
-1.188	9.5239	-1.173	9.6775	-0.959	10.5400	-1.219	10.6756	-0.721	46.6031
-1.204	9.5282	-1.187	9.6817	-0.910	10.5439	-1.221	10.6794	-0.661	46.6060
-1.181	9.5325	-1.196	9.6856	-0.856	10.5477	-1.212	10.6833	-0.612	46.6089
-1.174	9.5368	-1.218	9.6894	-0.737	10.5555	-1.199	10.6871	-0.545	46.6130
-1.143	9.5412	-1.221	9.6933	-0.659	10.5593	-1.184	10.6910	-0.508	46.6159
-1.143	9.5455	-1.223	9.6971	-0.598	10.5632	-1.178	10.6949	-0.518	46.6196
-1.128	9.5498	-1.232	9.7010	-0.563	10.5670	-1.161	10.6987	-0.512	46.6224
-1.112	9.5541	-1.251	9.7048	-0.556	10.5709	-1.150	10.7026	-0.507	46.6254
-1.079	9.5589	-1.239	9.7087	-0.555	10.5748	-1.135	10.7070	-0.504	46.6283
-1.046	9.5632	-0.580	9.8098	-0.560	10.5787	-1.114	10.7108	-0.500	46.6312
-1.017	9.5675	-0.637	9.8137	-0.617	10.5825	-1.103	10.7147	-0.507	46.6340
-0.982	9.5718	-0.715	9.8175	-0.670	10.5864	-1.066	10.7186	-0.562	46.6370
-0.934	9.5764	-0.778	9.8214	-0.748	10.5902	-1.043	10.7224	-0.611	46.6399
-0.848	9.5807	-0.820	9.8245	-0.808	10.5941	-1.006	10.7263	-0.663	46.6428
-0.790	9.5850	-0.884	9.8284	-0.867	10.5979	-0.968	10.7301	-0.717	46.6457
-0.717	9.5893	-0.922	9.8322	-0.913	10.6018	-0.918	10.7340	-0.776	46.6486
-0.640	9.5937	-0.967	9.8361	-0.958	10.6056	-0.843	10.7378	-1.108	46.6846
-0.571	9.5980	-1.018	9.8413	-1.003	10.6095	-0.787	10.7417	-1.110	46.6875
-0.549	9.6023	-1.070	9.8451	-1.034	10.6134	-0.712	10.7456	-1.130	46.6910
-0.553	9.6067	-1.072	9.8490	-1.050	10.6172	-1.169	46.5215	-1.148	46.6949
-0.552	9.6110	-1.216	10.4847	-1.087	10.6211	-1.182	46.5266	-1.148	46.6989
-0.550	9.6153	-1.226	10.4886	-1.103	10.6250	-1.178	46.5330	-1.165	46.7028
-0.583	9.6196	-1.220	10.4924	-1.126	10.6288	-1.169	46.5381	-1.178	46.7067
-0.656	9.6239	-1.196	10.4976	-1.143	10.6327	-1.154	46.5456	-1.185	46.7106
-0.743	9.6282	-1.203	10.5015	-1.157	10.6366	-1.146	46.5507	-1.182	46.7146
-0.806	9.6326	-1.191	10.5053	-1.172	10.6404	-1.122	46.5568	-1.186	46.7185
-0.867	9.6369	-1.180	10.5092	-1.180	10.6443	-1.111	46.5620	-1.194	46.7224
-0.923	9.6412	-1.156	10.5130	-1.197	10.6482	-1.085	46.5676	-1.186	46.7263

Table 2. CW Scl observations $\Delta \mathrm{B}, \Delta \mathrm{V}, \Delta \mathrm{R}$, and $\Delta \mathrm{I}$, variable minus comparison star (Epoch 2400000+), cont.

ΔV	$\begin{gathered} H J D \\ 2456930+ \end{gathered}$	ΔV	$\begin{gathered} H J D \\ 2456930+ \end{gathered}$	ΔV	$\begin{gathered} H J D \\ 2456930+ \end{gathered}$	ΔV	$\begin{gathered} H J D \\ 2456930+ \end{gathered}$	ΔV	$\begin{gathered} H J D \\ 2456930+ \end{gathered}$
-1.084	9.4830	-0.766	9.6339	-1.040	10.5181	-1.087	10.6416	-0.921	46.5813
-1.101	9.4884	-0.826	9.6383	-1.020	10.5220	-1.100	10.6455	-0.885	46.5864
-1.121	9.4962	-0.886	9.6426	-1.002	10.5258	-1.108	10.6494	-0.809	46.5923
-1.135	9.5028	-0.919	9.6469	-0.973	10.5297	-1.114	10.6535	-0.744	46.5974
-1.130	9.5079	-0.944	9.6512	-0.946	10.5335	-1.122	10.6574	-0.704	46.6010
-1.141	9.5122	-1.014	9.6555	-0.906	10.5374	-1.131	10.6613	-0.639	46.6039
-1.136	9.5166	-1.068	9.6694	-0.860	10.5412	-1.124	10.6651	-0.595	46.6068
-1.125	9.5209	-1.081	9.6746	-0.810	10.5451	-1.118	10.6690	-0.541	46.6097
-1.125	9.5252	-1.090	9.6789	-0.769	10.5489	-1.122	10.6729	-0.481	46.6139
-1.118	9.5296	-1.102	9.6829	-0.703	10.5528	-1.123	10.6768	-0.450	46.6167
-1.098	9.5339	-1.121	9.6868	-0.640	10.5567	-1.123	10.6806	-0.458	46.6204
-1.087	9.5382	-1.133	9.6906	-0.567	10.5605	-1.116	10.6845	-0.459	46.6233
-1.082	9.5426	-1.137	9.6945	-0.518	10.5644	-1.106	10.6883	-0.451	46.6262
-1.064	9.5469	-1.148	9.7022	-0.511	10.5682	-1.092	10.6922	-0.451	46.6291
-1.043	9.5512	-1.148	9.7060	-0.508	10.5721	-1.088	10.6961	-0.442	46.6320
-1.030	9.5555	-0.543	9.8110	-0.511	10.5760	-1.057	10.6999	-0.464	46.6349
-1.009	9.5602	-0.615	9.8149	-0.531	10.5799	-1.054	10.7038	-0.522	46.6379
-0.973	9.5645	-0.678	9.8187	-0.585	10.5837	-1.037	10.7082	-0.567	46.6408
-0.931	9.5689	-0.779	9.8257	-0.623	10.5876	-1.026	10.7121	-0.618	46.6436
-0.897	9.5732	-0.824	9.8296	-0.697	10.5914	-1.003	10.7159	-0.660	46.6465
-0.835	9.5777	-0.869	9.8334	-0.757	10.5953	-0.979	10.7198	-0.718	46.6494
-0.780	9.5821	-0.913	9.8373	-0.806	10.5991	-0.951	10.7236	-1.022	46.6855
-0.707	9.5864	-0.958	9.8425	-0.858	10.6030	-0.909	10.7275	-1.021	46.6884
-0.562	9.5951	-0.986	9.8463	-0.889	10.6068	-0.859	10.7313	-1.044	46.6921
-0.495	9.5994	-1.001	9.8502	-0.924	10.6107	-0.801	10.7352	-1.062	46.6961
-0.504	9.6037	-1.129	10.4898	-0.952	10.6146	-0.757	10.7390	-1.068	46.7000
-0.493	9.6080	-1.115	10.4936	-0.978	10.6184	-0.697	10.7429	-1.087	46.7039
-0.496	9.6123	-1.110	10.4988	-0.993	10.6223	-0.629	10.7468	-1.085	46.7078
-0.502	9.6167	-1.103	10.5027	-1.014	10.6262	-0.640	10.7468	-1.104	46.7117
-0.552	9.6210	-1.090	10.5065	-1.046	10.6301	-1.092	46.5282	-1.103	46.7157
-0.627	9.6253	-1.076	10.5104	-1.059	10.6339	-0.994	46.5692	-1.105	46.7196
-0.708	9.6296	-1.053	10.5142	-1.069	10.6378	-0.969	46.5743	-1.108	46.7236
ΔR	HJD								
	2456930+		2456930+		2456930+		2456930+		2456930+
-1.075	9.4996	-0.692	9.6306	-1.088	10.4829	-0.785	10.6000	-0.959	10.7168
-1.077	9.5045	-0.741	9.6349	-1.105	10.4868	-0.839	10.6039	-0.929	10.7206
-1.085	9.5089	-0.791	9.6392	-1.096	10.4907	-0.867	10.6077	-0.902	10.7245
-1.080	9.5132	-0.837	9.6435	-1.076	10.4958	-0.896	10.6116	-0.873	10.7283
-1.086	9.5175	-0.893	9.6479	-1.072	10.4997	-0.929	10.6154	-0.817	10.7322
-1.072	9.5219	-0.940	9.6522	-1.070	10.5035	-0.952	10.6193	-0.773	10.7360
-1.069	9.5262	-0.919	9.6565	-1.052	10.5074	-0.976	10.6232	-0.721	10.7399
-1.068	9.5305	-0.986	9.6608	-1.036	10.5113	-0.988	10.6271	-0.670	10.7438
-1.056	9.5348	-1.019	9.6712	-1.013	10.5151	-1.009	10.6309	-0.599	10.7477
-1.042	9.5392	-1.031	9.6755	-1.005	10.5190	-1.024	10.6348	-1.040	46.5191
-1.027	9.5435	-1.055	9.6798	-0.979	10.5228	-1.035	10.6386	-1.042	46.5242
-1.015	9.5478	-1.063	9.6838	-0.961	10.5267	-1.044	10.6425	-1.060	46.5305
-0.988	9.5522	-1.065	9.6876	-0.931	10.5305	-1.056	10.6464	-1.047	46.5357
-0.963	9.5569	-1.081	9.6915	-0.906	10.5344	-1.071	10.6506	-1.045	46.5432
-0.954	9.5612	-1.083	9.6953	-0.865	10.5383	-1.085	10.6544	-1.032	46.5483
-0.917	9.5655	-1.089	9.6992	-0.827	10.5421	-1.074	10.6583	-1.019	46.5544
-0.886	9.5698	-1.099	9.7031	-0.771	10.5460	-1.088	10.6621	-1.006	46.5595
-0.838	9.5744	-1.100	9.7069	-0.721	10.5498	-1.086	10.6660	-0.982	46.5652
-0.787	9.5787	-1.090	9.7108	-0.667	10.5537	-1.088	10.6699	-0.969	46.5703
-0.729	9.5830	-0.543	9.8119	-0.601	10.5575	-1.083	10.6738	-0.932	46.5773
-0.657	9.5874	-0.607	9.8157	-0.547	10.5614	-1.089	10.6777	-0.885	46.5824
-0.598	9.5917	-0.660	9.8196	-0.501	10.5652	-1.076	10.6815	-0.831	46.5883
-0.522	9.5960	-0.750	9.8233	-0.500	10.5691	-1.067	10.6854	-0.769	46.5935
-0.476	9.6003	-0.755	9.8266	-0.498	10.5730	-1.062	10.6892	-0.698	46.5988
-0.473	9.6047	-0.803	9.8304	-0.493	10.5769	-1.051	10.6931	-0.655	46.6017
-0.482	9.6090	-0.846	9.8343	-0.514	10.5807	-1.035	10.6969	-0.610	46.6046
-0.478	9.6133	-0.877	9.8395	-0.573	10.5846	-1.022	10.7008	-0.558	46.6075
-0.491	9.6176	-0.908	9.8433	-0.625	10.5884	-1.005	10.7052	-0.500	46.6116
-0.549	9.6219	-0.932	9.8472	-0.694	10.5923	-0.999	10.7091	-0.455	46.6145
-0.620	9.6263	-0.954	9.8510	-0.739	10.5962	-0.985	10.7129	-0.445	46.6182

Table 2. CW Scl observations $\Delta \mathrm{B}, \Delta \mathrm{V}, \Delta \mathrm{R}$, and $\Delta \mathrm{I}$, variable minus comparison star (Epoch 2400000+), cont.

ΔR	$\begin{gathered} H J D \\ 2456930+ \end{gathered}$	ΔR	$\begin{gathered} H J D \\ 2456930+ \end{gathered}$	ΔR	$\begin{gathered} H J D \\ 2456930+ \end{gathered}$	ΔR	$\begin{gathered} H J D \\ 2456930+ \end{gathered}$	ΔR	$\begin{gathered} H J D \\ 2456930+ \end{gathered}$
$\begin{aligned} & -0.430 \\ & -0.436 \\ & -0.438 \\ & -0.438 \\ & -0.441 \end{aligned}$	$\begin{aligned} & 46.6211 \\ & 46.6240 \\ & 46.6269 \\ & 46.6298 \\ & 46.6327 \end{aligned}$	$\begin{aligned} & -0.466 \\ & -0.513 \\ & -0.567 \\ & -0.609 \\ & -0.655 \end{aligned}$	$\begin{aligned} & 46.6357 \\ & 46.6386 \\ & 46.6414 \\ & 46.6443 \\ & 46.6472 \end{aligned}$	$\begin{aligned} & -0.694 \\ & -0.979 \\ & -0.999 \\ & -1.007 \\ & -1.020 \end{aligned}$	46.6503 46.6861 46.6891 46.6931 46.6970	$\begin{aligned} & -1.029 \\ & -1.044 \\ & -1.046 \\ & -1.052 \\ & -1.059 \end{aligned}$	$\begin{aligned} & 46.7009 \\ & 46.7048 \\ & 46.7087 \\ & 46.7127 \\ & 46.7166 \end{aligned}$	$\begin{aligned} & -1.055 \\ & -1.061 \end{aligned}$	$\begin{aligned} & 46.7206 \\ & 46.7245 \end{aligned}$
ΔI	$\begin{gathered} H J D \\ 2456930+ \end{gathered}$	ΔI	$\begin{gathered} H J D \\ 2456930+ \end{gathered}$	ΔI	$\begin{gathered} H J D \\ 2456930+ \end{gathered}$	ΔI	$\begin{gathered} H J D \\ 2456930+ \end{gathered}$	ΔI	$\begin{gathered} H J D \\ 2456930+ \end{gathered}$
-1.033	9.5003	-0.921	9.6529	-0.949	10.5197	-1.023	10.6551	-0.879	46.5783
-1.041	9.5053	-0.933	9.6573	-0.931	10.5235	-1.041	10.6590	-0.839	46.5834
-1.040	9.5096	-0.978	9.6616	-0.930	10.5274	-1.039	10.6628	-0.795	46.5893
-1.030	9.5139	-0.989	9.6720	-0.894	10.5313	-1.041	10.6667	-0.730	46.5945
-1.034	9.5183	-0.991	9.6763	-0.873	10.5351	-1.044	10.6706	-0.681	46.5994
-1.042	9.5226	-1.014	9.6806	-0.829	10.5390	-1.042	10.6745	-0.629	46.6023
-1.027	9.5270	-1.017	9.6845	-0.783	10.5428	-1.035	10.6784	-0.583	46.6052
-1.017	9.5313	-1.025	9.6883	-0.739	10.5467	-1.037	10.6822	-0.542	46.6081
-1.007	9.5356	-1.048	9.6922	-0.696	10.5505	-1.038	10.6861	-0.481	46.6122
-0.990	9.5400	-1.044	9.6960	-0.619	10.5544	-1.012	10.6899	-0.447	46.6151
-0.986	9.5443	-1.056	9.6999	-0.568	10.5582	-1.013	10.6938	-0.451	46.6188
-0.966	9.5486	-1.062	9.7038	-0.522	10.5621	-0.990	10.6976	-0.437	46.6216
-0.946	9.5529	-1.058	9.7076	-0.486	10.5659	-0.980	10.7015	-0.438	46.6246
-0.928	9.5576	-0.485	9.8087	-0.477	10.5698	-0.965	10.7059	-0.437	46.6275
-0.915	9.5620	-0.516	9.8126	-0.480	10.5737	-0.951	10.7098	-0.441	46.6304
-0.879	9.5663	-0.583	9.8164	-0.484	10.5776	-0.941	10.7136	-0.442	46.6332
-0.856	9.5706	-0.654	9.8203	-0.493	10.5814	-0.920	10.7175	-0.479	46.6362
-0.801	9.5751	-0.683	9.8234	-0.566	10.5853	-0.905	10.7213	-0.518	46.6391
-0.750	9.5795	-0.722	9.8273	-0.615	10.5892	-0.865	10.7252	-0.568	46.6420
-0.694	9.5838	-0.780	9.8311	-0.671	10.5930	-0.823	10.7290	-0.608	46.6449
-0.628	9.5881	-0.811	9.8350	-0.714	10.5969	-0.792	10.7329	-0.646	46.6478
-0.559	9.5925	-0.860	9.8402	-0.771	10.6007	-0.751	10.7367	-0.947	46.6838
-0.500	9.5968	-0.876	9.8440	-0.810	10.6046	-0.696	10.7406	-0.952	46.6867
-0.460	9.6011	-0.908	9.8479	-0.852	10.6084	-0.641	10.7445	-0.981	46.6899
-0.462	9.6054	-0.969	9.8517	-0.883	10.6123	-0.587	10.7484	-0.977	46.6939
-0.472	9.6098	-1.055	10.4811	-0.900	10.6161	-1.008	46.5201	-0.986	46.6978
-0.460	9.6141	-1.051	10.4837	-0.924	10.6201	-1.015	46.5252	-0.996	46.7017
-0.480	9.6184	-1.067	10.4875	-0.949	10.6239	-1.024	46.5315	-1.009	46.7056
-0.544	9.6227	-1.041	10.4914	-0.956	10.6278	-1.017	46.5367	-1.026	46.7096
-0.617	9.6270	-1.019	10.4965	-0.970	10.6316	-0.993	46.5442	-1.032	46.7135
-0.670	9.6313	-1.015	10.5004	-0.985	10.6355	-0.986	46.5493	-1.027	46.7174
-0.745	9.6357	-1.011	10.5043	-1.003	10.6393	-0.964	46.5554	-1.037	46.7214
-0.784	9.6400	-0.996	10.5081	-1.002	10.6432	-0.959	46.5605	-1.043	46.7253
-0.833	9.6443	-0.982	10.5120	-1.015	10.6471	-0.934	46.5662		
-0.869	9.6486	-0.972	10.5158	-1.016	10.6513	-0.912	46.5713		

Table 3. Period Study Results, CW Scl.

No.	HJD $2400000+$	Cycle	Linear Residual	Quadratic Residual	Weight	References
1	52177.6	-12446.0	0.0037	0.0009	0.3	ASAS 23801-3359.8 (ASAS 3)
2	52466.79	-11696.0	0.0034	0.0016	0.3	ASAS 23801-3359.8 (ASAS 3)
3	53647.65	-8633.5	-0.0005	0.0011	0.3	ASAS 23801-3359.8 (ASAS 3)
4	54404.75	-6670.0	-0.0017	0.0009	0.3	ASAS 23801-3359.8 (ASAS 3)
5	54669.84	-5982.5	-0.0025	0.0002	0.3	ASAS 23801-3359.8 (ASAS 3)
6	55101.7	-4862.5	-0.0027	0.0000	0.3	ASAS 23801-3359.8 (ASAS 3)
7	52940.68	-10467.0	-0.0012	-0.0013	1	Otero et al. 2004
8	56939.61	-96.0	0.0003	-0.0001	1	Present Observations
9	56940.57	-93.5	0.0006	0.0002	1	Present Observations
10	56976.62	0.0	0.0004	-0.0001	1	Present Observations

Table 4. Light curve characteristics.

Filter	Phase	Magnitude Min. I	Phase	Magnitude Max. II
	0.0		0.25	
B		-0.526 ± 0.023		-1.204 ± 0.024
V		-0.466 ± 0.024		-1.123 ± 0.022
R		-0.458 ± 0.008		
I			-1.076 ± 0.019	
Filter	Phase	Magnitude	Phase	Magnitude
		Min. II		Max. I

Table 5. CW Scl Light curve solution.

Parameters	Values
$\lambda \mathrm{B}, \lambda \mathrm{V}, \lambda \mathrm{R}, \lambda \mathrm{I}(\mathrm{nm})$	440, 550, 640, 790
xbol1,2, ybol1,2	$\begin{array}{llll}0.647 & 0.647 & 0.176 & 0.176\end{array}$
$\mathrm{x}_{11,2 \mathrm{I}}, \mathrm{y}_{11,21}$	$\begin{array}{lllll}0.590 & 0.590 & 0.260 & 0.260\end{array}$
$\mathrm{x}_{1 \mathrm{R}, 2 \mathrm{R}}, \mathrm{y}_{1 \mathrm{R}, 2 \mathrm{R}}$	$0.6740 .6740 .2690 .269$
$\mathrm{x}_{1 \mathrm{lV}, 2 \mathrm{~V}}, \mathrm{y}_{1 \mathrm{~V}, 2 \mathrm{~V}}$	$\begin{array}{lllll}0.745 & 0.745 & 0.256 & 0.256\end{array}$
$\mathrm{X}_{1 \mathrm{~B}, 2 \mathrm{~B}}, \mathrm{y}_{1 \mathrm{~B}, 2 \mathrm{~B}}$	$\begin{array}{llllll}0.829 & 0.829 & 0.185 & 0.185\end{array}$
$\mathrm{g}_{1}, \mathrm{~g}_{2}$	$0.32,0.32$
$\mathrm{A}_{1}, \mathrm{~A}_{2}$	$0.5,0.5$
Inclination (${ }^{\circ}$)	84.2 ± 0.3
$\mathrm{T}_{1}, \mathrm{~T}_{2}(\mathrm{~K})$	5750, 5968 ± 9
Ω_{1}, Ω_{2}	2.749 ± 0.005
Pshift	0.5
$\mathrm{q}\left(\mathrm{m}_{2} / \mathrm{m}_{1}\right)$	0.439 ± 0.004
Fill-out (\%)	3 ± 1
$\mathrm{L}_{1} /\left(\mathrm{L}_{1}+\mathrm{L}_{2}\right)_{\mathrm{I}}$	0.655 ± 0.002
$\mathrm{L}_{1} /\left(\mathrm{L}_{1}+\mathrm{L}_{2}\right)_{\mathrm{R}}$	0.651 ± 0.002
$\mathrm{L}_{1} /\left(\mathrm{L}_{1}+\mathrm{L}_{2}\right)_{\mathrm{V}}$	0.645 ± 0.002
$\mathrm{L}_{1} /\left(\mathrm{L}_{1}+\mathrm{L}_{2}\right)_{\mathrm{B}}$	0.631 ± 0.002
$\mathrm{HJD}_{\mathrm{o}}$ (days)	2456976.6241 ± 0.00015
Period (days)	0.385578 ± 0.000002
$\mathrm{r}_{1}, \mathrm{r}_{2}$ (pole)	$0.426 \pm 0.001,0.291 \pm 0.002$
$\mathrm{r}_{1}, \mathrm{r}_{2}$ (side)	$0.454 \pm 0.002,0.304 \pm 0.002$
$\mathrm{r}_{1}, \mathrm{r}_{2}$ (back)	$0.482 \pm 0.002,0.337 \pm 0.004$

Errors are from wD full set standard deviations (formal errors). The temperature, T_{1} is fixed from the 2MASS determination and may carry a 200-250 K error.

Photometric Analysis of Three ROTSE Contact Binary Systems

Surjit S. Wadhwa
Astronomical Society of NSW, Sydney, NSW, Australia; surjitwadhwa@gmail.com

Received September 18, 2016; revised December 19, 2016; accepted December 21, 2016

Abstract

Ground-based photometry of three ROTSE contact binary systems was analyzed using the Wilson-Devinney method. One system with a very low mass ratio below $\mathrm{q}=0.06$ and one with high mass ratio with a complete eclipse and edge-on inclination were found and represent candidates for further study.

1. Introduction

The W Ursae Majoris (W UMa) group of short-period contact eclipsing binaries are important test beds for theories of stellar evolution. Numerous new contact systems have been discovered recently through the automated sky survey programs and dedicated amateur observing efforts. Quite a large percentage of the new discoveries remain largely unanalyzed even though data are of sufficient quality to yield at least basic physical information. In a previous paper published in this journal I have demonstrated how analysis of amateur observations of a contact binary star for which little other information is available can yield a satisfactory photometric solution (Wadhwa 2004). In this first paper I present photometric solution for three binary systems discovered by the The Robotic Optical Transient Search Experiment (ROTSE) that have had follow up ground-based observations published.

GSC 963-246 (R.A. $16^{\mathrm{h}} 27^{\mathrm{m}} 44.9^{\text {s }}$, Dec. $+11^{\circ} 03^{\prime} 38^{\prime \prime}(2000)$) was discovered by the ROTSE mission and catalogued as a contact system by Gettel et al. (2006). Ground-based dualband (R and V) photometry was reported in 2007 (Blättler and Diethelm 2007). Preliminary analysis confirmed the contact binary nature of the system with the following basic elements: $\mathrm{JD}(\min \mathrm{I}$, hel $)=2453898.3997+0.337043 \times \mathrm{E}$; magnitude (R) variation of 0.41 mag . for the primary eclipse and 0.36 mag . for the secondary eclipse. The photometry data are available publically (http://ibvs.konkoly.hu/pub/ibvs/5701/5799-t4.txt). The R band data were analyzed to determine mass ratio and other parameters in the present study.

Ground-based observations of GSC 3034-299 (R.A. $14^{\text {h }}$ $05^{\mathrm{m}} 08.985^{\text {s }}$, Dec. $+38^{\circ} 54^{\prime} 18.74^{\prime \prime}(2000)$) were reported in Blättler and Diethelm (2006). Preliminary analysis confirmed the contact binary nature of the system with the following basic elements: $J D(\min I$, hel $)=2453382.6919+0.395010 \times E$; unfiltered (near R) yielded a magnitude range of 11.46-12.20 mag. (primary eclipse) and 11.46-12.13 mag. (secondary eclipse). The photometry data are available publically (http:// ibvs.konkoly.hu/pub/ibvs/5601/5699-t10.txt). The data although unfiltered are reported to be near-red bandpass and were analyzed as R band data.

GSC 2587-1888 (R.A. $16^{\mathrm{h}} 29^{\mathrm{m}} 19.89^{\text {s }}$, Dec. $+35^{\circ} 40^{\prime}$ $02.90^{\prime \prime}(2000)$) is another ROTSE variable with ground-based photometry in both the R and V bands reported in 2007 (Blättler and Diethelm 2007). Preliminary analysis confirmed the contact binary nature of the system with the following basic elements: $\mathrm{JD}(\min \mathrm{I}$, hel $)=2453877.4694+0.310726 \times \mathrm{E}$; primary and
secondary eclipses have a magnitude variation of 0.17 in the R band. The photometry data are available publically (http://ibvs. konkoly.hu/pub/ibvs/5701/5799-t2.txt). The R band data were analyzed in this study.

2. Light curve analysis

The mass ratio of a contact binary system is usually determined by radial velocity studies. The mass ratio is then used to determine other features of the system such as the inclination, degree of contact, and temperature variations. However, where radial velocity data are not available, under certain circumstances, such as when the system exhibits at least one total eclipse, a systematic search of the parameter space for various values of the mass ratio can be employed to determine the correct mass ratio for the system (Terrell and Wilson 2005). This is sometimes referred to as the grid search method and has previously been employed on many data sources, including data obtained through automated sky patrols (Wadhwa 2004, 2005).

As radial velocity data were not available for any of the systems analyzed in this paper, the grid search method as described in the above-referenced articles was employed. In addition, very few basic data are available for the systems and certain assumptions with respect to the temperature of the primary were required as outlined below. In each case the available data indicated a probable convective envelope, therefore gravity brightening was set at 0.32 and bolometric albedos were set at 0.5 . Black body approximation was used for the stars' emergent flux and simple reflection treatment was applied. The maximum magnitude of the stars is not well known, therefore the photometric data were normalised to the mean magnitude between phases 0.24 and 0.26 in each case. This methodology has previously been applied to the analysis of All Sky Automated Survey and ground-based amateur observations (Wadhwa 2004, 2005).

3. Individual systems

3.1. GSC 963-246 = ROTSE1 J162744.97+110336.5, V1179 Her

The SIMBAD database gives a B-V value of 0.54 for the system leading to a calibrated temperature of 6100 K . The mass ratio search grid (Figure 1) demonstrated a nice clear minimum with the mass ratio at 0.14 . Based on this, other parameters of the photometric solution are summarized in Table 1. As can be seen, the temperature of the secondary is similar to that of the primary, indicating good thermal equilibrium, however, it

Table 1. Photometric Solution for GSC 963-246.

Parameter	Value
Mass Ratio (q)	$0.14+0.004$
T2	$6122 \mathrm{~K}+49 \mathrm{~K}$
Potential	$2.021+0.01$
Inclination (i)	$78.15+1.4$
Fillout	60.3%

Figure 1. Mass ratio search grid for GSC 963-246. The best fit as indicated by the least sum of squares occurs at $\mathrm{q}=0.14$.

Figure 2. GSC 963-246 light curves. Solid line = fitted curve; Open circles $=$ observed curve.

Figure 3. Three dimensional model of GSC 963-246.

Table 2. Basic photometric elements for GSC 3034-299.

Parameter	Value
Mass Ratio (q)	$0.50+0.01$
T2	$5664 \mathrm{~K}+25 \mathrm{~K}$
Potential	$2.813+0.02$
Inclination(i)	90.00
Fillout	21.0%

Figure 4. Mass ratio search grid for GSC 3034-299. There is a clear minimum at $\mathrm{q}=0.5$.

Figure 5. Fitted (solid line) and observed (open circles) light curves for GSC 3034-299.

Figure 6: 3D representation of GSC 3034-299.
is somewhat difficult to classify the system as either A or W type. Based purely on the values of the photometric solution the system would be of W-Type. The fitted light curves are shown in Figure 2, while a three-dimensional representation (Bradstreet 1993) is shown in Figure 3.

3.2. GSC 3034-299 = ROTSE1 J140509.23+385417.9, GN CVn

This system has an effective temperature of 5660 K based on a B-V of 0.63 as per the SIMBAD database. The light curve has relatively deep minima, suggesting a higher mass ratio than usual for contact binary systems. The presence of a complete eclipse would suggest a high almost edge-on inclination. As with the previous example the grid search method was applied to search for the mass ratio of best fit. As illustrated in Figure 4 the system has a clearly defined minimum error at $\mathrm{q}=0.5$. The remainder of the photometric solution is summarized in Table 2, confirming an edge-on inclination and good thermal contact with no difference in the temperatures between the stars. Observed and fitted light curves are shown in Figure 5 while the three-dimensional representation (Bradstreet 1993) is shown in Figure 6.

Since the initial analysis of this system the author has become aware that the system had been analyzed previously by Samec et al. (2012). The 2012 analysis reached a very similar solution with a mass ratio of 0.48 with good thermal contact, high inclination of 89.6 degrees, and 24% fillout. The closeness of the two solutions adds further confidence that analysis of amateur observations can yield high quality and useful scientifically valid analysis.

3.3. GSC 2587-1888 = NSVS 7913634, TYC 2587-1888-1

GSC 2587-1888 is another ROTSE variable and is largely unstudied. The SIMBAD database yields a B-V of 0.48 corresponding to an effective temperature of 6393 K . Visual inspection of the light curve (Figure 7) clearly indicates a total eclipse. Prior to starting the mass ratio search grid manual light curve fitting was used to get an approximate starting point. During this process it became clear that the system most likely had a very low mass ratio, as all attempts to manually fit the light curves with $q>0.1$ yielded non-physical systems. The automated differential corrections would also only lead to either very poorly fitting or non-physical systems when the mass ratio was greater than 0.1 . Similarly very low mass ratios ($q<0.05$) also yielded poorly fitting solutions, which is not surprising given that as calculated by Ruciński (1993) the maximum amplitude for systems with mid-range contact and mass ratios less than 0.05 would be less than 0.14 magnitude. Our system exhibits amplitude well in excess at 0.17 magnitude, which suggests a mass ratio above 0.05 but below 0.09 .

A reasonable manual fit was made at the high end of this range at $\mathrm{q}=0.09$ and the other parameters adjusted to yield the best solution for this mass ratio. The mass ratio was then allowed to be an adjustable parameter and differential corrections iterations performed again. The mass ratio quickly drifted down with marked improvement in the fitting profile. The best fit (Figure 7, Table 3) was achieved with a possible record low mass ratio for a contact system of $q=0.059$ with the secondary star considerably hotter than the primary. A three-dimensional

Table 3. Basic photometric elements for GSC 2587-1888.

Parameters	
T2	$6727 \mathrm{~K}+73 \mathrm{~K}$
Inclination (i)	$66.23+1.13$
Potential	$1.815+.01$
Mass Ratio (q)	$0.059+.02$
Fillout	19.15%

Figure 7. The best fit (solid line) and the observed (open circles) light curves for GSC 2587-1888.

Figure 8. Three-dimensional representation of GSC 2587-1888 showing the extremely small secondary in shallow contact with its much larger primary.
representation (Bradstreet 1993) is shown in Figure 8.
The mass ratio of 0.059 is significantly smaller than the theoretical lower limit of 0.07 (Li and Zhang 2006). The theoretical limit, however, is valid for stars in good thermal equilibrium and with high degree of contact ($>70 \%$). Our system is somewhat different, with a very shallow contact of 19% and poor thermal equilibrium. Although a very rare event it is possible that GSC $2587-1888$ is a newly formed low mass contact system having only recently moved from the semidetached to the contact phase. Unfortunately the confidence in the low mass ratio must be tempered as the analysis was performed on a small photometric sample with moderate error. However, the system clearly deserves a more thorough study.

4. Conclusion

An analysis of the ground-based photometry of three ROTSE variables has identified GSC 2587-1888 as a possible very low mass ration system which is in the early phase contact. The study again highlights the importance of analysis of all data regardless of whether they are professional or amateur in deepening our understanding of contact binary astronomy.

5. Acknowledgements

This research made use of the SIMBAD database, operated by the CDS at Strasbourg, France.

References

Blättler, E., and Diethelm, R. 2006, Inf. Bull. Var. Stars, No. 5699, 1 (Report 13, Table 10).
Blättler, E., and Diethelm, R. 2007, Inf. Bull. Var. Stars, No. 5799, 1 (Report 1, Table 4; Report 4, Table 10).
Bradstreet, D. H. 1993, BINARY MAKER 2.0 light curve synthesis program, Contact Software, Norristown, PA.

Gettel, S. J., Geske, M. T., and McKay, T. A. 2006, Astron. J., 131, 621.
Li, L., and Zhang, F. 2006, Mon. Not. Roy. Astron. Soc, 369, 2001.

Ruciński, S. M. 1993, Publ. Astron. Soc. Pacific, 105, 1433.
Samec, R., Jaso, A., White, J., Faulkner, D. R., Blum, N., and Van Hamme, W. 2012, ISRN Astron. Astrophys., 2012, article 972572.
Terrell, D., and Wilson, R. 2005, Astrophys. Space Sci., 296, 221.

Wadhwa, S. S. 2004, J. Amer. Assoc. Var. Star Obs., 32, 95.
Wadhwa, S. S. 2005, Astrophys. Space Sci., 300, 289.

The VESPA Survey: 100 New Variable Stars Discovered in Two Years

Ulisse Quadri

IAU station 565, Bassano Bresciano Astronomical Observatory; AAVSO; Unione Astrofili Italiani (UAI); Italian Supernovae Search Project (ISSP); Via S. Michele,4, Bassano Bresciano, Italy; info@ulisse.bs.it

Luca Strabla

IAU station 565, Bassano Bresciano Astronomical Observatory; Italian Supernovae Search Project (ISSP); Via Paolo VI, Palazzolo Sull'Oglio, Italy; lucapietro.strabla@fastwebnet.it

Roberto Girelli
IAU station 565, Bassano Bresciano Astronomical Observatory; Italian Supernovae Search Project (ISSP); Via G. Migliorati, Bassano Bresciano, Italy; ro.girelli@tiscali.it

Received September 27, 2016; revised November 18, 2016; accepted December 29, 2016

Abstract

We describe the VESPA project made at IAU station 565, Astronomical Observatory in Bassano Bresciano (BS), Italy. It is one photometric survey of the northern hemisphere which has the aim of discovering and investigating new variable stars. In the first two years of activity we have discovered 100 new variable stars in the course of observations carried out from August 2014 to September 2016. The newly discovered stars comprise 80 eclipsing binary stars (66 of them classified as W Ursae Majoris, 11 as β Lyrae, and 3β Persei), one rotating (ROT), one ellipsoidal variable (ELL), and 18 pulsating variables (5 of them classified as RRAB, 7 RRC, 3 HADS, 2δ Scuti and one Cepheid). Variability classification is based on the properties of the optical light curves that we obtained using our $255 \mathrm{~mm} \mathrm{~F} / 4.7$ Newton robotic telescope.

1. Introduction

The VESPA project (Variable Star Search Project for Automated Telescope) is made at IAU station 565, Bassano Bresciano Observatory, Brescia, Italy (www. osservatoriobassano.org). It is a CCD photometric survey of the northern hemisphere, which has the aim of discovering and investigating new variable stars in the magnitude range $13.5<$ $\mathrm{V}<16.5$.

In the course of observations carried out from August 2014 to September 2016, we obtained 50,865 images with 120 -second exposure on 253 nights (Table 1), and we have discovered 100 new variable stars (Tables 2 and 3; Figure 4). We have determined the type (Table 4), the period, the epoch, and the amplitude for all the discovered stars. A key to the sources of observations shown in Figure 4 is given in Table 5.

2. Instrumentation and methodology

Observations were obtained using our homemade $255-\mathrm{mm}$ F/4.7 Newton telescope (Figure 1), equipped with Starlight Xpress Trius-SX9 CCD camera, with a sensor area of 1392×1040 pixels (Pixel size: $6.45 \times 6.45 \mu \mathrm{~m}$). This configuration results in a FOV (field of view) of $25.8^{\prime} \times 19.2^{\prime}$. We configured the camera in a 2×2 binning mode with angular resolution of 2.22×2.22 $\operatorname{arcsec} /$ pixel. The camera is equipped with a Sony ICX285A CCD and dual stage cooler. The observations were obtained with the CCD operating at the temperature of $-10^{\circ} \mathrm{C}$ (in hot seasons) and $-15^{\circ} \mathrm{C}$ (in cold seasons). Observations were made using a Johnson V filter or were unfiltered and reduced to a V zeropoint (CV).

Table 1. Summary of the observations.

Date	Nights	Images	Hours/Month
2014 Aug	15	2319	77
2014 Sep	15	2863	96
2014 Oct	17	2671	89
2014 Nov	8	1207	40
2014 Dec	6	1553	52
2015 Jan	15	3219	107
2015 Feb	8	1340	45
2015 Mar	1	254	9
2015 Apr	10	1689	56
2015 May	5	582	19
2015 Jun	5	678	23
2015 Jul	18	2468	82
2015 Aug	15	3044	102
2015 Sep	9	1750	58
2015 Oct	11	1814	61
2015 Nov	15	3383	113
2015 Dec	5	761	25
2016 Jan	10	2219	74
2016 Feb	4	845	28
2016 Mar	10	2827	94
2016 Apr	2	522	17
2016 May	5	1083	36
2016 Jun	2	241	8
2016 Jul	16	2733	91
2016 Aug	16	5225	174
2016 Sep	10	3575	119
Total 26	253	50865	1695

The telescope is located near the Bassano Bresciano Astronomical Observatory, at the coordinates $45^{\circ} 19^{\prime} 32^{\prime \prime} \mathrm{N}$, $10^{\circ} 07^{\prime} 49^{\prime \prime} \mathrm{E}$ (WGS84) in a home-made dome that slides on rails and closes automatically at the end of the session or in bad weather.

Table 2. Main characteristics of discovered stars.

Name	R.A. (J2000)			Dec. (J2000)			Type	Maximum Magnitude	Minimum Magnitude	Filter	Period (days)	Epoch (HJD)
	h	m	s	D		"						
VESPA_V1	22	02	42.26	+27	56	11.9	EW	15.68	15.83	V	0.231335	2456884.49382
VESPA_V2	20	29	59.18	+16	13	24.8	EW	14.13	14.74	CV	0.410520	2456887.53907
VESPA_V3	20	30	57.66	+16	20	18.2	RRC	13.82	14.19	CV	0.269646	2456897.46106
VESPA_V4	20	33	27.57	+16	33	49.3	EW	14.20	14.49	CV	0.367287	2456900.41422
VESPA_V5	20	33	52.03	+16	37	16.2	EW	14.12	14.29	CV	0.251410	2456900.44974
VESPA_V6	20	33	31.01	+16	45	30.7	EW	15.30	15.57	CV	0.435868	2456902.43919
VESPA_V7	20	28	10.70	+15	57	48.4	EB	14.50	15.04	CV	0.515464	2456914.48392
VESPA_V8	20	29	04.95	+16		54.9	EW	12.68	13.20	V	0.689388	2454656.74000
VESPA_V9	22	14	34.94	+41		29.2	RRAB	15.20	16.14	CV	0.470367	2456923.47856
VESPA_V10	22	15	01.38	+40		41.6	EW	14.99	15.40	CV	0.301903	2456923.33854
VESPA_V11	22	15	32.47	+42		21.4	EW	14.56	15.35	CV	0.324274	2456929.59510
VESPA_V12	22	00	50.64	+43	28	05.5	EW	14.82	15.65	CV	0.308914	2456953.27595
VESPA_V13	22	16	11.34	+41	44	34.4	EB	13.17	13.78	CV	1.065884	2456956.26090
VESPA_V14	21	59	34.23	+43	44	20.1	EW	14.62	15.05	CV	0.307018	2456954.34605
VESPA_V15	22	01	56.59	+43	38	14.4	EW	14.36	14.91	CV	0.368932	2456953.31305
VESPA_V16	22	01	01.40	+43	07	47.5	HADS	14.61	14.80	CV	0.074446	2456958.42234
VESPA_V17	22	00	22.75	+42	47	16.3	EB	13.58	13.85	CV	0.612290	2456981.34566
VESPA_V18	21	59	21.72	+42	55	59.6	EW	13.42	13.83	V	0.707333	2456961.37362
VESPA_V19	01	21	57.75	+47	49	33.3	EW	11.66	11.92	CV	0.401534	2456963.48117
VESPA_V20	21	57	47.66	+43	12	52.1	RRAB	15.54	16.65	CV	0.500800	2456980.70800
VESPA_V21	01	55	59.74	+51	43	06.8	EW	12.74	12.87	CV	0.398786	2457021.33460
VESPA_V22	01	54	36.50	+51	40	25.7	EW	12.47	12.75	CV	0.331038	2457021.31500
VESPA_V23	01	56	15.56	+52	26	54.9	HADS	11.84	12.22	CV	0.097959	2457032.28910
VESPA_V24	01	56	01.71	+52	20	26.7	RRC	16.26	16.89	CV	0.255661	2457031.31195
VESPA_V25	05	29	11.37	+36	18	53.1	EW	12.88	13.02	CV	0.244124	2457046.42710
VESPA_V26	05	29	07.71	+37	07	19.0	EW	15.04	15.48	CV	0.350117	2457061.36990
VESPA_V27	15	03	17.13	+40	01	24.3	EW	14.10	14.22	CV	0.335815	2457094.54690
VESPA_V28	14	56	16.91	+42	20	08.7	RRC	14.83	15.20	CV	0.405029	2457128.47030
VESPA_V29	14	23	33.18	+40	28	42.5	DSCT	14.10	14.16	CV	0.244056	2457154.48110
VESPA_V30	20	28	04.41	+17	05	58.7	RRC	13.88	14.31	CV	0.297016	2457214.43030
VESPA_V31	20	28	22.41	+17	02	29.0	RRC	15.38	15.64	CV	0.226653	2457215.44521
VESPA_V32	20	28	35.95	+16	29	50.7	EB	12.80	13.01	V	0.324731	2457220.47750
VESPA_V33	20	28	10.72	+16	58	28.5	EW	13.55	13.70	CV	0.628050	2457218.42190
VESPA_V34	20	28	22.92	+17	25	25.9	RRC	15.68	16.06	CV	0.182098	2457221.50940
VESPA_V35	20	26	52.66	+16	07	38.5	HADS	14.23	14.53	CV	0.092075	2457226.48610
VESPA_V36	20	28	47.63	+17	27	52.1	EW	15.19	15.48	CV	0.426604	2457221.44360
VESPA_V37	20	25	52.43	+15	59	09.5	EW	15.47	15.85	CV	0.378992	2457226.41856
VESPA_V38	20	25	55.45	+15	55	03.5	EW	14.92	15.19	CV	0.539153	2457229.52320
VESPA_V39	20	26	26.08	+16	13	29.5	EW	13.64	14.31	V	0.531559	2457240.43710
VESPA_V40	20	25	29.70	+15	55	35.5	EB	13.97	14.52	CV	0.627498	2457242.46690
VESPA_V41	20	26	01.99	+17	16	05.5	EW	14.67	15.19	CV	0.415141	2457248.45400
VESPA_V42	20	25	55.36	+17	12	00.5	EW	16.00	16.55	CV	0.314593	2457255.36630
VESPA_V43	20	25	58.88	+16	04	59.7	EW	16.79	17.48	CV	0.337285	2457238.43280
VESPA_V44	20	25	45.96	+15	56	50.7	EW	17.30	18.20	CV	0.385902	2457238.46340
VESPA_V45	20	24	56.29	+16	34	20.8	EW	15.75	16.10	CV	0.354840	2457267.43020
VESPA_V46	20	25	26.75	+16	48	43.6	EW	16.13	16.90	CV	0.335819	2457260.39690
VESPA_V47	20	24	44.51	+16	48	59.5	EW	13.98	14.08	CV	0.287455	2457266.51978
VESPA_V48	21	57	23.21	+43	43	44.6	EW	12.98	13.22	V	0.382097	2457271.40468
VESPA_V49	21	55	09.40	+43	12	00.1	RRAB	15.64	16.85	CV	0.457989	2457271.40140
VESPA_V50	21	56	17.50	+43	06	30.1	ELL	14.40	14.51	CV	0.42497	2457272.51000
VESPA_V51	21	55	18.52	+43	43	50.4	EW	14.32	14.60	CV	0.429272	2457272.43140
VESPA_V52	21	55	33.79	+43	13	40.2	EW	15.63	16.15	CV	0.326901	2457272.46870
VESPA_V53	21	55	16.50	+43	38	24.7	EW	16.84	17.59	CV	0.352131	2457272.43590
VESPA_V54	21	55	59.08	+43	52	47.3	EW	14.63	15.15	CV	0.447872	2457287.55890
VESPA_V55	21	58	51.40	+44	03	14.4	EB	16.54	17.03	CV	0.378575	2457285.26930
VESPA_V56	21	58	28.30	+44	02	39.9	CEP:	16.70	17.60	CV	0.488907	2457286.33280
VESPA_V57	21	56	20.52	+44	00	50.6	EB	15.25	16.00	CV	0.49385	2457304.38380
VESPA_V58	23	06	00.72	+52	48	28.7	DSCT	14.09	14.26	CV	0.101393	2457317.27760
VESPA_V59	23	07	47.22	+53	08	32.6	EW	15.63	16.01	CV	0.346930	2457317.49470
VESPA_V60	23	07	05.97	+53	15	07.3	EW:	15.11	15.33	CV	0.258547	2457317.46000
VESPA_V61	23	06	54.85	+53	01	13.6	EB	14.40	14.88	V	0.521825	2457318.40000
VESPA_V62	21	57	32.58	+44	11	53.2	EW	15.76	16.42	V	0.437156	2457336.47790
VESPA_V63	22	15	36.03	+49	57	26.2	EA	14.75	15.57	CV	0.397447	2457328.36290
VESPA_V64	06	20	02.96	+24	31	00.5	EW	14.30	15.10	CV	0.483931	2457358.53500
VESPA_V65	05	26	25.66	+37	18	59.1	EW	14.75	15.25	CV	0.276202	2457334.64860
VESPA_V66	21	57	58.06	+44	14	25.4	EW	16.14	16.42	CV	0.377845	2457336.46710
VESPA_V67	04	42	39.24	+20	20	36.0	EW	13.75	13.89	CV	0.404445	2457404.3349

Table 2. Main characteristics of discovered stars, cont.

Name	R.A. (J2000)			Dec. (J2000)			Type	Махітит Magnitude	Minimum Magnitude	Filter	Period (days)	Epoch (HJD)
	h	m	s	,	,	,						
VESPA_V68	04	40	47.61	+20	38	58.9	EB	12.49	12.81	CV	1.867115	2457405.45456
VESPA_V69	05	55	32.35	+10	13	39.8	EB	15.03	15.60	V	0.406012	2457424.43617
VESPA_V70	05	56	09.59	+10	19	44.5	EW	15.86	16.51	CV	0.448186	2457424.4737
VESPA_V71	05	55	55.69	+10	25	40.1	EW	16.05	16.95	CV	0.282211	2457424.3464
VESPA_V72	05	55	35.92	+10	10	41.0	EW	17.20	17.90	CV	0.405469	2457424.4409
VESPA_V73	07	09	29.07	+24	02	15.3	EW	15.02	15.41	CV	0.425751	2457429.45313
VESPA_V74	07	09	46.41	+24	12	00.3	EW	17.34	17.76	CV	0.341853	2457429.48899
VESPA_V75	07	09	40.11	+24	13	03.1	EA	14.40	14.86	CV	1.105988	2457429.4171
VESPA_V76	15	01	27.29	+19	02	42.7	ROT	15.05	15.32	CV	0.446332	2457466.5402
VESPA_V77	19	29	55.23	+43	59	32.9	EW	17.36	18.14	CV	0.266673	2457577.4281
VESPA_V78	20	24	00.72	+16	05	13.6	EW	16.90	17.70	CV	0.429332	2457580.5226
VESPA_V79	20	22	19.15	+16	09	09.5	EW	14.90	15.23	CV	0.458647	2457587.543
VESPA_V80	20	22	26.51	+16	30	57.8	EW	17.10	17.95	CV	0.438596	2457596.3932
VESPA_V81	20	22	26.40	+16	36	00.6	RRC	14.37	14.76	CV	0.266504	2457600.5385
VESPA_V82	20	23	09.48	+16	43	21.4	EW	16.87	17.47	CV	0.304543	2457600.4959
VESPA_V83	20	22	58.03	+16	38	38.5	EW	16.70	17.50	CV	0.356628	2457596.4292
VESPA_V84	20	22	34.41	+16	30	39.4	EW	16.45	16.95	CV	0.370557	2457596.44
VESPA_V85	20	23	00.81	+17	17	18.4	RRAB	15.58	16.53	CV	0.590231	2457602.4502
VESPA_V86	20	22	28.61	+16	57	21.0	RRAB	15.65	16.52	CV	0.584052	2457602.4394
VESPA_V87	20	22	00.51	+17	00	59.1	EW	15.54	16.46	CV	0.390820	2457604.5495
VESPA_V88	20	21	59.18	+17	10	36.5	EW	15.07	15.51	CV	0.224842	2457602.559
VESPA_V89	20	24	51.91	+17	24	40.9	EW	16.26	16.98	CV	0.349912	2457608.3857
VESPA_V90	20	23	58.29	+17	44	30.4	EA/RS	15.05	15.75	CV	0.404912	2457613.4108
VESPA_V91	20	23	29.90	+17	34	56.5	EW	14.32	14.65	CV	0.320912	2457614.5985
VESPA_V92	20	23	16.71	+17	35	26.6	EW	15.13	15.53	CV	0.344223	2457614.5725
VESPA_V93	20	24	11.14	+17	36	57.9	EB	14.42	14.70	CV	0.819545	2457614.5751
VESPA_V94	20	19	57.74	+16	58	50.6	EW	14.72	15.12	CV	0.346042	2457632.3915
VESPA_V95	20	20	27.48	+16	48	48.2	EW	14.07	14.40	CV	0.36193	2457638.3591
VESPA_V96	20	20	32.03	+17	35	57.6	EW	16.40	17.10	CV	0.33209	2457623.3103
VESPA_V97	20	22	04.07	+16	40	44.2	EW	15.90	16.26	CV	0.302188	2457639.2871
VESPA_V98	20	21	42.04	+17	14	44.5	EW	16.01	16.48	CV	0.417834	2457624.2079
VESPA_V99	20	21	18.65	+17	41	37.2	EW	14.86	15.18	CV	0.403108	2457637.5187
VESPA_V100	20	20	26.39	+17	19	26.8	EW	14.76	14.98	CV	0.352926	2457624.5463

Figure 1. Observations were obtained using this homemade 255-mm F/4.7 Newton telescope, equipped with Starlight Xpress Trius-SX9 CCD camera, with a sensor area of 1392×1040 pixels (Pixel size: $6.45 \times 6.45 \mu \mathrm{M}$).

Figure 2. Magnitude-RMS scatter diagram. This a plot (SD Plot) of the Mean Magnitude (x -axis) and the standard deviation (y -axis) for each candidate, and is the discovery graph for VESPA_V94 and V95. The zero in the x-axis represents the mean of magnitudes. Values $<$ zero are for the stars brighter than mean and the values $>$ zero are for the stars fainter than the mean.

Figure 3. Variable stars discovered in this project, by type.

VESPA_V1 $=2$ MASS J22024225+2756117 $=$ UCAC4 590-132222 VESPA_V2 $=2$ MASS J20295917+1613248 $=$ UCAC4 532-128317 VESPA_V3 $=2$ MASS J20305765+1620182 $=$ UCAC4 532-128620 VESPA_V4 = 2MASS J20332757+1633491 = UCAC4 533-132584 VESPA_V5 = 2MASS J20335203+1637161 = UCAC4 534-128918 VESPA_V6 $=2$ MASS J20333100+1645306 = UCAC4 534-128825 VESPA_V7 $=2$ MASS J20281070+1557483 = UCAC4 530-133575 VESPA_V8 $=2$ MASS J20290495+162054 = UCAC4 532-128061 VESPA_V9 $=2$ MASS J22143494+4110292 = UCAC4 656-106683 VESPA_V10 $=2$ MASS J22150137+4055416 = UCAC4 655-109319 VESPA_V11 $=2$ MASS J22153246+4202214 = UCAC4 661-108309 VESPA_V12 $=2$ MASS J22005064 $+4328054=$ UCAC4 668-108654 VESPA_V13 $=2$ MASS J22161133 $+4144343=$ UCAC4 659-105178 VESPA_V14 $=2$ MASS J21593423 $+4344200=$ UCAC4 669-105250 VESPA_V15 $=2$ MASS J22015659+4338143 = UCAC4 669-105729 VESPA_V16 $=2$ MASS J22010139+4307474 = UCAC4 666-109206 VESPA_V17 $=2$ MASS J22002275 $+4247162=$ UCAC4 664-106603 VESPA_V18 $=2$ MASS J21592172 $+4255596=$ GSC 03193-01009 VESPA_V19 $=2$ MASS J01215775+4749332 $=$ GSC 03269-00586 VESPA_V20 $=2$ MASS J21574764+4312521 = UCAC4 667-104920 VESPA_V21 = 2MASS J01555975+5143067 = GSC 03292-02057 VESPA_V22 $=2$ MASS J01543649+5140257 = GSC 03292-02037 VESPA_V23 $=2$ MASS J01561556 $+5226548=$ GSC 03292-01328 VESPA-V24 $=2$ MASS J01560166+5220266 $=$ USNO-B1.0 1423-0062011 VESPA_V25 $=2$ MASS J05291136+3618531 $=$ GSC 02415-01387 VESPA_V26 $=2$ MASS J05290770 $+3707190=$ UCAC4 636-026479 VESPA_V27 $=$ GSC 03047-01108 $=$ UCAC4 651-054439 VESPA_V28 $=$ GSC 03047-00740 $=$ UCAC4 662-058379 VESPA_V29 $=$ GSC 03038-00203 = UCAC4 653-056492 VESPA_V30 $=$ UCAC4 536-132799 $=$ USNO-B1.0 1070-0618597 VESPA_V31 $=$ UCAC4 536-132889 = USNO-B1.0 1070-0618935 VESPA_V32 $=$ CMC15 J202835.9+162950 $=$ UCAC4 533-131232 VESPA_V33 $=$ CMC15 J202810.7 $+165828=$ UCAC4 535-129895 VESPA_V34 $=2$ MASS J20282292 $+1725258=$ CMC15 J202822.9 +172525 VESPA_V35 $=2$ MASS J20265265 $+1607383=$ CMC15 J202652.6+160738 VESPA_V36 $=2$ MASS J20284763 $+1727519=$ CMC15 J202847.6+172751 VESPA_V37 $=$ CMC15 J202552.4 $+155909=$ UCAC4 530-132810 VESPA_V38 $=2$ MASS J20255544 $+1555036=$ CMC15 J202555.4 +155503 VESPA_V39 $=2$ MASS J20262608 $+1613294=$ CMC15 J202626.0 +161329 VESPA_V40 $=2$ MASS J20252969 $+1555353=$ CMC15 J202529.7 +155535 VESPA_V41 $=2$ MASS J20260198+1716055 = CMC15 J202601.9+171605 VESPA_V42 $=2$ MASS J20255536 $+1712004=$ CMC15 J202555.3 +171200 VESPA_V43 $=2$ MASS J20255886 $+1604597=$ CMC15 J202558.8+160459 VESPA_V44 $=2$ MASS J20254596+1556505 = CMC15 J202545.9 +155650 VESPA_V45 $=2$ MASS J20245629 $+1634209=$ CMC15 J202456.2 +163420 VESPA_V46 $=2$ MASS J20252674 $+1648434=$ CMC15 J202526.7 +164843 VESPA_V47 $=2$ MASS J20244451+1648594 $=$ CMC15 J202444.5+164859 VESPA_V48 $=2$ MASS J21572320 $+4343446=$ CMC15 J215723.2 +434344 VESPA_V49 $=2$ MASS J21550937 $+4311599=$ CMC15 J215509.3+431159 VESPA_V50 $=2$ MASS J21561748 $+4306299=$ CMC15 J215617.4 +430629

VESPA_V51 $=2$ MASS J21551852 $+4343504=$ CMC15 J215518.5 434350 VESPA_V52 $=2$ MASS J21553378+4313402 $=$ UCAC4 667-104506
VESPA_V53 $=2$ MASS J21551650 $+4338246=$ CMC15 J215516.5 +433824
VESPA_V54 $=2$ MASS J21555907 $+4352473=$ CMC15 J215559.0 +435247
VESPA_V55 $=2$ MASS J21585137 $+4403143=$ CMC15 J215851.3 +440314
VESPA_V56 $=2$ MASS J21582830 $+4402398=$ CMC15 J215828.3 +440239
VESPA_V57 $=2$ MASS J21562051 $+4400505=$ CMC15 J215620.5 +440050
VESPA_V58 $=2$ MASS J23060071 $+5248286=$ UCAC4 715-107866
VESPA_V59 $=2$ MASS J23074721 $+5308326=$ UCAC4 716-108199
VESPA_V60 $=2$ MASS J23070597+5315072 $=$ UCAC4 717-106819
VESPA_V61 $=2$ MASS J23065483+5301137 $=$ UCAC4 716-108055
VESPA_V62 $=2$ MASS J21573258+4411532 $=$ CMC15 J215732.5+441153
VESPA_V63 $=2$ MASS J22153602 $+4957262=$ CMC15 J221536.0 +495726 VESPA_V64 $=2$ MASS J06200295 $+2431004=$ CMC15 J062002.9 +243100 VESPA_V65 $=2$ MASS J05262565 $+3718591=$ CMC15 J052625.6+371859 VESPA_V66 $=2$ MASS J21575805 $+4414254=$ CMC15 J215758.0 4441425 VESPA_V67 $=2$ MASS J04423923 $+2020360=$ CMC15 J044239.2 +202035 VESPA_V68 $=2$ MASS J04404761+2038589 = CMC15 J044047.6+203858 VESPA_V69 $=2$ MASS J05553235 $+1013397=$ CMC15 J055532.3+101339 VESPA V70 $=2$ MASS J05560959 $+1019447=$ CMC15 J055609.5 +101944 VESPA_V71 $=2$ MASS J05555569 $+1025402=$ CMC15 J055555.6 +102540 VESPA_V72 $=2$ MASS J05553591 $+1010410=$ CMC15 J055535.9 +101041 VESPA_V73 $=2$ MASS J07092907+2402152 = CMC15 J070929.0+240215 VESPA_V74 $=2$ MASS J07094640 $2412002=$ CMC15 J070946.3 +241200 VESPA_V75 $=$ 2MASS J07094011 $+2413031=$ CMC15 J070940.1+241303 VESPA_V76 $=2$ MASS J15012728+1902426 $=$ CMC15 J150127.2+190242 VESPA_V77 $=$ 2MASS J19295526 $+4359325=$ CMC15 J192955.2 +435932 VESPA_V78 $=2$ MASS J20240071 $+1605136=$ CMC15 J202400.7 +160513 VESPA_V79 $=$ 2MASS J20221915 $+1609094=$ CMC15 J202219.1+160909 VESPA_V80 $=2$ MASS J20222650 $+1630577=$ CMC15 J202226.5+163057 VESPA_V81 $=2$ MASS J20222640 $+1636007=$ CMC15 J202226.3 +163600 VESPA_V82 $=2$ MASS J20230947+1643214 = CMC15 J202309.4+164321 VESPA_V83 $=2$ MASS J20225805 $+1638384=$ CMC15 J202258.0 +163838 VESPA_V84 $=2$ MASS J20223442+1630393 $=$ CMC15 J202234.4+163039 VESPA_V85 $=2$ MASS J20230080 $+1717184=$ CMC15 J202300.8+171718 VESPA_V86 $=2$ MASS J20222860 $+1657210=$ CMC15 J202228.6 +165721 VESPA_V87 $=2$ MASS J20220051+1700593 $=$ CMC15 J202200.5 +170059 VESPA_V88 $=2$ MASS J20215918 $+1710365=$ CMC15 J202159.1 +171036 VESPA_V89 $=2$ MASS J20245192 $+1724410=$ CMC15 J202451.9+172441 VESPA_V90 $=2$ MASS J20235827 $+1744303=$ CMC15 J202358.2 +174430 VESPA_V91 $=2$ MASS J20232990 $+1734564=$ CMC15 J202329.9 +173456 VESPA_V92 $=2$ MASS J20231671+1735267 $=$ CMC15 J202316.7+173526 VESPA_V93 $=2$ MASS J20241113 $+1736579=$ CMC15 J202411.1+173657 VESPA_V94 $=2$ MASS J20195774 $+1658505=$ CMC15 J201957.7 +165850 VESPA_V95 $=2$ MASS J20202748 $+1648482=$ CMC15 J202027.4 +164848 VESPA_V96 $=2$ MASS J20203203 $+1735574=$ CMC15 J202032.0 +173557 VESPA_V97 $=2$ MASS J20220407 $+1640442=$ CMC15 J202204.0 +164044 VESPA_V98 $=2$ MASS J20214204 $+1714445=$ CMC15 J202142.0 +171444 VESPA_V99 $=2$ MASS J20211865 $+1741371=$ CMC15 J202118.6 +174137 VESPA_V100 $=2$ MASS J20202638 $+1719268=$ CMC15 J202026.3 +171926

We used polypus software release 1.9 (Bassano Bresciano Observatory 2013) to control the robotic observations and astrometrical pointing system. We took exposures when the target's altitude was more than 30 degrees. Raw images were processed with flat field and dark frames.

We used the variable star search utility of mpo canopus version 10.4.0.20 (Minor Planet Observer 2010) to search for new variable stars. This utility uses a magnitude-RMS scatter diagram. Figure 2 is a plot (SD Plot) of the Mean Magnitude (x-axis) and the standard deviation (y-axis) for each candidate, and is the discovery graph for VESPA_V94 and V95. The zero in the x -axis represents the mean of magnitudes. Values $<$ zero are for the stars brighter than mean and the values $>$ zero are for the stars fainter than the mean.

Usually, for our system, the discoveries are in the $0.05<$
$\mathrm{SD}<1$ range. Other stars have SD in this range for other (nonvariable) reasons.

We also used mpo canopus to perform differential photometry on the reduced images. PERANSO software version 2.51 (Vanmunster 2013) was used for period analysis (using generally the ANOVA method) and to determine the epoch and the amplitude.

In a typical observing session, one or two fields in succession are imaged for the duration of the night, in order to have a continuous coverage of a 0.13 or 0.27 square degree area for each observing session, with a typical exposure time of 2 minutes. The exposure time was chosen in order to measure photometrically stars between magnitudes 13.5 and 16.5.

To increase the probability of finding new stars, the fields were chosen in the vicinity of the Milky Way in areas not yet covered by professional surveys to avoid discovering stars
already known. Generally, the fields were chosen from the $+10<$ declination $<+60$ range due to obstacles on the ground. In some cases, the fields were those crossed by some asteroids of which we studied photometrically the rotation period. For the choice of the fields we have used the AAVSO Variable Star Plotter (VSP; AAVSO 2016) service of the AAVSO.

The methodology involves a discovery phase in which we scanned the fields in search of new stars, and a followup phase in which we obtained the complete light curves.

We used comparison stars of similar color to that of the variable so as to minimize errors due to atmospheric refraction. To improve the parameters of these stars we have also used, if possible, data of the CRTS, SWASP, ASAS-3, APASS, and NSVS surveys. The coordinates of new variable stars (Table 2) were obtained from the UCAC4 catalogue (Zacharias et al. 2012).

3. Discussion

For every star we have proposed a type of variability based on the characteristics shown by its differential light curve, its amplitude, period, and spectral class (Tables 1 and 3; Figure 3).

We have determined the spectral class from the APASS, 2MASS, and CMC 15 catalogues, using tables contained in A Stellar Spectral Flux Library: 1150-25000 A° (Pickles 1998).

For the eclipsing stars we have also used Binary Stars-A Pictorial Atlas (Terrell et al. 1992). For pulsating stars we have used the text: "Variable Star Type Designations in VSX" (Watson et al. 2014), based on the General Catalogue of Variable Stars (GCVS; Samus et al. 2009) description of variable star type designations, and Variable Star Classification and Light Curves (AAVSO 2012).

We have submitted all stars to AAVSO/VSX, which has approved and registered these stars.

4. Co-discovery

In some cases the discoveries were made thanks to the collaboration of other people so we included them as discoverers, with us, in the VSX record: Sebastian Otero, co-discoverer of VESPA_V39 and VESPA_V76; Giorgio Bianciardi, codiscoverer of VESPA_V1 and VESPA_V2; and Bruce McMath, co-discoverer of VESPA_V20 and VESPA_V57.

5. Acknowledgements

Our thanks to Sebastian Otero (VSX Team) for his extremely valuable comments and help in resolving the intricate cases in variable star identification. Many of our discoveries have been resolved with the help of Sebastian's vast knowledge and his experience.

This research has made use of the follow sources and services: International Variable Star Index (VSX) database, operated at AAVSO,Cambridge, Massachusetts, USA; the AAVSO Photometric All-Sky Survey (APASS; Henden et al. 2015), funded by the Robert Martin Ayers Sciences Fund; VizieR catalogue access tool, CDS, Strasbourg, France; the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and

Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation; the CMC15 Data Access Service at CAB (INTA-CSIC); the CSS survey funded by the National Aeronautics and Space Administration under Grant No. NNG05GF22G issued through the Science Mission Directorate Near-Earth Objects Observations Program; the CRTS survey is supported by the U.S. National Science Foundation under grants AST-0909182 and AST-1313422; The All Sky Automated Survey (Pojmański 1997); the Northern Sky Variability Survey created jointly by the Los Alamos National Laboratory and University of Michigan, funded by the U.S. Department of Energy, the National Aeronautics and Space Administration and the National Science Foundation; SuperWASP Public Archive operated by the WASP consortium; observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and the USA (NASA); U.S. Naval Observatory CCD Astrograph Catalog (UCAC4).

References

AAVSO. 2016, Variable Star Plotter (VSP; https://www.aavso. org/apps/vsp/).
AAVSO. 2012, Variable Star Classification and Light Curves, AAVSO, Cambridge, MA (https://www.google.com/ url?q=https://www.aavso.org/files/Variable\%2520Star\%252 0Classification\%2520and\%2520Light\%2520Curves\%2520 Manual\%25202.1.pdf\&sa=U\&ved=0ahUKEwipzeeU4qPR AhUG6YMKHVh1A2AQFggEMAA\&client=internal-udscse\&usg=AFQjCNFWhsdQQocyTci_g3p4PZt3uREptw).
Bassano Bresciano Observatory. 2013, polypus software release 1.9 (http://www.osservatoriobassano.org/Software.asp).

Henden, A. A., et al. 2015, AAVSO Photometric All-Sky Survey, data release 9 (https://www.aavso.org/apass).
Minor Planet Observer. 2010, MPO Software Suite (http:// www.minorplanetobserver.com), BDW Publishing, Colorado Springs.
Pickles, A. J. 1998, Publ. Astron. Soc. Pacific, 110, 863.
Pojmański, G. 1997, Acta Astron., 47, 467.
Samus, N. N., et al. 2009, General Catalogue of Variable Stars, VizieR On-line Data Catalog (http://cdsarc.u-strasbg.fr/viz-bin/Cat?B/gcvs).
Terrell, D., Mukherjee, J., and Wilson, R. E. 1992, Binary Stars. A Pictorial Atlas, Kriegar, Malabar.Vanmunster, T. 2013, light curve and period analysis software, PERANSO (http://www.peranso.com/).
Watson, C., Henden, A. A., and Price, C. A. 2014, AAVSO International Variable Star Index VSX (Watson+, 20062014; https://www.aavso.org/vsx).
Zacharias, N., Finch, C. T., Girard, T. M., Henden, A., Bartlett, J. L., Monet, D. G., and Zacharias, M. I. 2012, The Fourth U.S. Naval Observatory CCD Astrograph Catalog (UCAC4), VizieR On-line Data Catalog (http://cdsarc.u-strasbg.fr/viz-bin/Cat?I/322).

Table 4. Variable stars by type.

| Extrinsic | | Intrinsic | |
| :--- | ---: | :--- | :--- | :--- |
| Type | Number | Type | Number |
| EA | 3 | RRAB | 5 |
| EB | 11 | RRC | 7 |
| EW | 66 | HADS | 3 |
| ELL | 1 | DSCT | 2 |
| ROT | 1 | CEP | 1 |

Table 5. Key to the sources of observations shown in Figure 4 (from VSX, Watson et al. 2014).

Vespa	Use of Colors in the Light Curves	Vespa	Use of Colors in the Light Curves
V1	Green = UAI_Astra/Skylive 2014-08-16,	V50	Yellow = SWASP, all other VESPA at Bassano Observatory
	all other VESPA at Bassano Observatory	V51	Yellow = SWASP, all other VESPA at Bassano Observatory
V2	$\text { Green }=\text { UAI_Astra/Skylive 2014-08-21, }$	V52	All VESPA at Bassano Observatory
	all other VESPA at Bassano Observatory	V53	All VESPA at Bassano Observatory
V3	All VESPA at Bassano Observatory	V54	All VESPA at Bassano Observatory
V4	All VESPA at Bassano Observatory	V55	All VESPA at Bassano Observatory
V5	All VESPA at Bassano Observatory	V56	All VESPA at Bassano Observatory
V6	All VESPA at Bassano Observatory	V57	Red $=$ VESPA, blue $=$ Bruce McMath
V7	All VESPA at Bassano Observatory	V58	Blue $=$ VESPA, yellow $=$ SWASP
V8	Black $=$ VESPA, yellow $=$ ASAS-3, pink $=$ APASS	V59	All VESPA at Bassano Observatory
V9	All VESPA at Bassano Observatory	V60	All VESPA at Bassano Observatory
V10	All VESPA at Bassano Observatory	V61	Yellow $=$ SWASP, green $=$ APASS,
V11	All VESPA at Bassano Observatory		all other VESPA at Bassano Observatory
V12	All VESPA at Bassano Observatory	V62	Blue $=$ VESPA, red $=$ APASS
V13	All VESPA at Bassano Observatory	V63	All VESPA at Bassano Observatory
V14	All VESPA at Bassano Observatory	V64	Yellow = SWASP, all other VESPA at Bassano Observatory
V15	All VESPA at Bassano Observatory	V65	Blue $=$ VESPA, yellow $=$ SWASP
V16	All VESPA at Bassano Observatory	V66	All VESPA at Bassano Observatory
V17	All VESPA at Bassano Observatory	V67	Blue $=$ VESPA, green $=$ CRTS
V18	Blue $=$ VESPA, green $=$ SWASP, black $=$ APASS	V68	Blue $=$ VESPA, light grey $=$ SWASP, grey $=$ CRTS
V19	Black $=$ VESPA, green $=$ SWASP	V69	Blue $=$ VESPA, red $=$ APASS
V20	Blue $=$ VESPA, black $=$ Bruce McMath	V70	All VESPA at Bassano Observatory
V21	Grey = NSVS, all other VESPA at Bassano Observatory	V71	All VESPA at Bassano Observatory
V22	Grey $=$ NSVS, all other VESPA at Bassano Observatory	V72	All VESPA at Bassano Observatory
V23	grey $=$ NSVS, all other VESPA at Bassano Observatory	V73	Blue $=$ VESPA, green $=$ CRTS
V24	All VESPA at Bassano Observatory	V74	Black $=$ VESPA, red $=$ CRTS
V25	Black $=$ VESPA, red $=$ NSVS, green $=$ SWASP	V75	Black $=$ VESPA, grey $=$ SWASP
V26	All VESPA at Bassano Observatory	V76	Grey $=$ CRTS,
V27	Grey $=$ CRTS, all other VESPA at Bassano Observatory		all other VESPA at Bassano Observatory + Sebastian Otero
V28	Grey $=$ CRTS, all other VESPA at Bassano Observatory	V77	All VESPA at Bassano Observatory
V29	Red $=$ VESPA, grey $=$ CRTS	V78	All VESPA at Bassano Observatory
V30	All VESPA at Bassano Observatory	V79	All VESPA at Bassano Observatory
V31	All VESPA at Bassano Observatory	V80	All VESPA at Bassano Observatory
V32	Yellow $=$ ASAS-3, red $=$ APASS,	V81	All VESPA at Bassano Observatory
	all other VESPA at Bassano Observatory	V82	All VESPA at Bassano Observatory
V33	All VESPA at Bassano Observatory	V83	All VESPA at Bassano Observatory
V34	All VESPA at Bassano Observatory	V84	All VESPA at Bassano Observatory
V35	All VESPA at Bassano Observatory	V85	All VESPA at Bassano Observatory
V36	All VESPA at Bassano Observatory	V86	All VESPA at Bassano Observatory
V37	All VESPA at Bassano Observatory	V87	All VESPA at Bassano Observatory
V38	All VESPA at Bassano Observatory	V88	All VESPA at Bassano Observatory
V39	Blue $=$ VESPA, red $=$ APASS, light green $=$ NSVS,	V89	All VESPA at Bassano Observatory
	$\text { green }=\text { ASAS }-3+\text { Sebastian Otero }$	V90	All VESPA at Bassano Observatory
V40	All VESPA at Bassano Observatory	V91	All VESPA at Bassano Observatory
V41	All VESPA at Bassano Observatory	V92	All VESPA at Bassano Observatory
V42	All VESPA at Bassano Observatory	V93	All VESPA at Bassano Observatory
V43	All VESPA at Bassano Observatory	V94	All VESPA at Bassano Observatory
V44	All VESPA at Bassano Observatory	V95	All VESPA at Bassano Observatory
V45	All VESPA at Bassano Observatory	V96	All VESPA at Bassano Observatory
V46	All VESPA at Bassano Observatory	V97	All VESPA at Bassano Observatory
V47	All VESPA at Bassano Observatory	V98	All VESPA at Bassano Observatory
V48	All VESPA at Bassano Observatory	V99	All VESPA at Bassano Observatory
V49	All VESPA at Bassano Observatory	V100	All VESPA at Bassano Observatory

Color versions of the plots shown in Figure 4 (published grayscale in print) may be viewed at https://www.aavso.org/apps/jaavso/article/3234/ .

Figure 4. Light curves of the 100 discovered variable stars. In the following pages we present the light curves of all variable stars, presented in the order given in Table 2. Explanation of the colors used in the light curves: Generally each color represents an observing session. In some cases the different colors are used for the various survey (CRTS, SWASP, ASAS-3, APASS, NSVS, etc.) used to better determine the period of the variableas as described in Table 5. In the AAVSO-VSX, for each variable star there is a light curve with a legend that best explains the colors used.

[^0]

Figure 4. Light curves of the 100 discovered variable stars, cont.

Figure 4. Light curves of the 100 discovered variable stars, cont.

[^1]

Figure 4. Light curves of the 100 discovered variable stars, cont.

Figure 4. Light curves of the 100 discovered variable stars, cont.

[^2]

Figure 4. Light curves of the 100 discovered variable stars, cont.

Studies of the Long Secondary Periods in Pulsating Red Giants. II. LowerLuminosity Stars

John R. Percy
Henry Wai-Hin Leung
Department of Astronomy and Astrophysics, and Dunlap Institute of Astronomy and Astrophysics, University of Toronto, Toronto, ON M5S 3H4, Canada; john.percy@utoronto.ca

Received November 8, 2016; revised January 10, 2017; accepted January 19, 2017

Abstract

We have used AAVSO visual and photoelectric V data and the AAVSO time-series package vstar and the LombScargle time-series algorithm to determine improved pulsation periods, "long secondary periods" (LSPs), and their amplitudes in 51 shorter-period pulsating red giants in the AAVSO photoelectic photometry program and in the AAVSO LPV (long period variable) binocular program. As is well known, radial pulsation becomes detectable in red giants at about spectral type M0, with periods of about 20 days. We find that the LSP phenomenon is also first detectable at about M0. Pulsation and LSP visual or V amplitudes increase from near zero to about 0.1 magnitude at periods of 100 days. At longer periods, the pulsation amplitudes continue to increase, but the LSP amplitudes are generally between 0.1 and 0.2 magnitude on average. The ratios of LSP to pulsation period cluster around 5 and 10 , presumably depending on whether the pulsation period is the fundamental or first overtone. The pulsation and LSP phase curves are generally close to sinusoidal, except when the amplitude is small, in which case they may be distorted by observational scatter or, in the case of the LSP amplitude, by the pulsational variability. As with longer-period stars, the LSP amplitude increases and decreases by a factor of two or more, for unknown reasons, on a median time scale of about 20 LSPs. The LSP phenomenon is thus present and similar in radially pulsating red giants of all periods. Its cause remains unknown.

1. Introduction

In a previous paper (Percy and Deibert 2016), which is one of a series of our papers about pulsating red giants, we addressed the question of the nature and cause of the "long secondary periods" (LSPs) which occur in about a third of these stars, and whose cause is unknown. In the present paper, we look especially at shorter-period pulsating red giants in two samples: (1) stars in the AAVSO photoelectric photometry (PEP) program, which have both visual and PEP data; (2) shorterperiod stars in the AAVSO LPV Binocular Program (www. aavso.org/lpv-section-file-downloads). These data, though not as precise as, for instance, MACHO and OGLE data, have the advantage that they have been sustained over many decades.

AAVSO PEP observations of pulsating red giants have already been analyzed by Percy et al. (1996). Now, there are an additional two decades of data. Robotic telescope PEP observations of similar stars were analyzed by Percy et al. (2001), and merged AAVSO and robotic observations were analyzed by Percy et al. (2008).

We hope to address scientific questions such as whether the LSPs occur in shorter-period, lower-luminosity red giants, and whether their amplitudes, and their ratio to the fundamental pulsation period are the same as in longer-period stars. Shorterperiod stars have smaller pulsation and LSP amplitudes but, for the same length of dataset, yield more accurate values of the LSP, and the timescale of its amplitude variation. Since the pulsation periods are much less than a year, they are slightly less likely to be complicated by one-cycle-per-year aliases. Ultimately, we would like to make progress in identifying the nature and cause of the LSP phenomenon.

2. Data and Analysis

We used visual and PEP V observations from the AAVSO International Database (AID; Kafka 2016), and the AAVSO vSTAR time-series analysis package (Benn 2013), which includes both a Fourier and a wavelet analysis routine. Co-author HL was interested in comparing the results of VSTAR with those from the Lomb-Scargle algorithm (implemented here with the astropy. stats.LombScargle routine within PYTHON (www.python.org)) so we used that also for some of the analysis. Figure 1 shows the period spectrum of the visual data on T Cen, obtained with the Lomb-Scargle algorithm. The best period, the one-year aliases, and the harmonics are present and marked.

Our two samples of stars have some selection effects. Those in the PEP program were pulsating red giants which were in the AAVSO visual program in the early 1980s, but had small

Figure 1. The Lomb-Scargle period spectrum for T Cen visual data, showing the best period (90.5 days), the one-year aliases, and the harmonics.
amplitudes, and would therefore benefit from PEP observations. The stars in the binocular program were presumably stars which were reasonably bright, and had moderate to high amplitudes. We chose to analyze stars from this program with shorter periods, since we were especially interested in the LSP phenomenon in such stars.

3. Results

3.1. Periods and amplitudes

We have determined improved periods and amplitudes in these 43 stars. Table 1 lists stars in the AAVSO LPV Binocular Program with periods less than about 120 days, for which there were sufficient data for analysis, along with our results. The columns give: the star name, the pulsation period PP, the LSP, the ratio of LSP to PP, and the pulsation and LSP visual amplitudes in magnitudes. In this and Table 2, some LSPs are close to one year and, if their amplitudes are small, there is some possibility that they are spurious (Percy 2015). Table 2 lists stars in the AAVSO PEP program for which there were sufficient visual and PEP V data to determine periods (see Notes on Individual Stars), along with our results. The columns give: the star name, the pulsation period PP, the LSP, the ratio of LSP to PP, and the pulsation and LSP amplitudes. In deciding on the value of the amplitude, we have usually given greater weight to the photoelectric V data. In any case, the PP and LSP amplitudes of these stars vary with time (Percy and Abachi 2013). Note that, although we concentrated on stars with shorter periods, there were stars in the PEP program (RS Cnc, η Gem, and SW Vir) which had longer periods. In the binocular program, X Her was listed as having a period of 102 days, but was found to have a longer one; Y Lyn was listed as having a period of 110 days, but was also found to have a longer one.

There were six stars (TV Psc, Z Eri, RR Eri, TV UMa, FP Vir, and V1070 Cyg) which were common to both programs. The two authors decided to analyze them independently. For Z Eri, this yielded two different results for the pulsation period -78.5 and 118.4 days. For this star, the Fourier spectrum yielded several peaks of comparable height, including those mentioned. In the V data, the highest was 239-243 days. We conclude that, with the present data, the pulsation period is indeterminate. For RR Eri, we obtained two different results for the LSP-366 and 742 days. In the Fourier spectrum of the V data, 742 days is marginally higher, whereas 366 days could well be a spurious period. Aside from these marginal differences, VSTAR and Lomb-Scarge gave equivalent results.

3.2. Long secondary periods

For the stars in Table 1, Figure 2 plots the ratio of LSP to pulsation period LSP/PP against PP. The shaded area is a histogram projected on the y-axis, with the scale on the top. Percy and Deibert (2016) found the ratio LSP/PP to be about 5 when the pulsation period was the fundamental period, and about 10 when the pulsation period was the first overtone. Figure 2 also shows clustering at about 5-6 and 8-10 and also some stars with a ratio of 12-14. The latter have short pulsation periods, and may be pulsating in the second overtone. This is consistent with previous studies of pulsation modes in short-

Table 1. Shorter-period stars in the AAVSO LPV binocular program.

Star	$P P$	$L S P$ (d)	$L S P / P P$	PP amp (mag)	LSP amp $($ mag $)$
(d) Aps	108.8	1023	9.4	0.14	0.11
RT Cnc	89.3	$371:$	4.1	0.06	0.10
TU CVn	44.8	$363:$	8.1	0.03	0.03
V465 Cas	97.2	895	9.3	0.07	0.18
T Cen	90.5	-	-	0.54	-
SS Cep	100.3	958	9.5	0.06	0.09
RR CrB	55.5	630	11.3	0.04	0.05
AF Cyg	94	1439	15.3	0.13	0.08
V1070 Cyg	62.4	640	10.3	0.04	0.05
U Del	118	1166	9.9	0.05	0.21
CT Del	80.7	$372:$	4.6	0.06	0.12
TX Dra	77.5	712	9.2	0.09	0.15
Z Eri	118.4	725	6.2	0.05	0.11
RR Eri	92.6	$366:$	3.9	0.06	0.10
X Her	176.0	667	3.8	0.06	0.08
g Her	87.6	877	10.0	0.03	0.16
UW Her	106.8	985	9.3	0.09	0.07
IQ Her	76.1	624	8.2	0.05	0.12
RX Lep	100.7	572	5.6	0.06	0.07
Y Lyn	133.2	1257	9.5	0.08	0.33
SV Lyn	67.6	545	8.1	0.06	0.08
XY Lyr	121.4	1235	10.2	0.04	0.04
GO Peg	74.9	473	6.3	0.05	0.07
TV Psc	55.1	403	7.4	0.03	0.04
24 Ser	111.1	1159	10.5	0.04	0.11
W Tri	105.5	765	7.3	0.05	0.08
ST UMa	90.2	625	6.9	0.04	0.07
TV UMa	53.8	653	12.2	0.03	0.06
V UMi	72.9	759	10.5	0.12	0.08
FP Vir	62.8	384	6.1	0.08	0.11

Table 2. Red giants in the AAVSO PEP program.

Star	$P P$				
	(d)	$L S P$ (d)	$L S P / P P$	PP amp $($ mag $)$	LSP amp (mag)
χ Aqr	40.2	229	5.7	0.03	0.03
RZ Ari	56.5	507	9.0	0.05	0.05
W Boo	25	$360::$	14.4	0.02	0.04
RS Cnc	240.8	2050	8.5	0.19	0.12
FZ Cep	81.8	743	9.1	0.11	0.10
FS Com	55.7	680	12.2	0.06	0.06
W Cyg	132	(259)	(2)	0.20	0.17
AB Cyg	69	525	7.6	0.10	0.13
V1070 Cyg	62.8	639	10.2	0.04	0.05
V1339 Cyg	34.1	-	-	0.04	-
EU Del	62.5	626	10.0	0.12	0.08
AZ Dra	44	$359:$	8.2	$0.04:$	$0.10:$
Z Eri	78.5	730	9.3	0.10	0.13
RR Eri	92.5	742	8.0	0.12	0.10
η Gem	232	-	-	0.07	-
IN Hya	87.8	$693:$	7.9	0.09	0.10
R Lyr	53	$380:$	7.2	0.04	0.04
V533 Oph	58	400	6.9	0.08	0.10
ρ Per	55	723	13.1	0.05	0.06
TV Psc	55.0	$400:$	7.3	0.03	0.04
CE Tau	105	1280	12.2	0.03	0.08
TV UMa	54	640	11.9	$0.06:$	0.07
VW UMa	66	621	9.4	0.06	0.07
VY UMa	122	1180	9.7	0.05	0.06
SW Vir	155	1647	10.6	0.50	0.21
FH Vir	59.6	$360:$	6.0	0.09	$0.15:$
FP Vir	65	$375:$	5.8	0.07	0.10

period, small-amplitude red giants, which showed that many of these pulsate in the first or second overtone (e.g. Percy and Bakos 2003).

3.3. Amplitudes

Figure 3 plots the visual or V pulsation amplitude in magnitudes against the pulsation period. As is well-known (see Percy and Guler 1999 and the review by Kiss and Percy 2012, for instance), pulsation sets in at about M0 spectral type, which corresponds to periods of about 20 days. The pulsation amplitude then increases with period, as seen in Figure 4.

Figure 4 plots the PP amplitude against the LSP amplitude, both visual or V , in magnitudes. The two are approximately equal for periods less than about 100 days. For longer periods, the LSP amplitude is typically $0.05-0.2$ magnitude (Percy and Deibert 2016). The LSP phenomenon thus becomes detectable at the same spectral type as radial pulsation.

3.4. Phase curves

For the stars in Table 1, the shape of the pulsation phase curve and the LSP phase curve were investigated by fitting them with a fifth-degree polynomial, and comparing the result to a sine curve using the scipy.stats.pearsonr module in PYTHON. The results are shown in figures 5 and 6 . For the pulsation phase curves, there is a small dissimilarity for stars with visual amplitudes less than 0.1 magnitude. The simplest explanation is that, for these, the shape of the true (sinusoidal?) phase curve is being distorted by observational scatter. The LSP phase curves also tend to be less sinusoidal if the amplitude is less than 0.1 magnitude; again, the simplest explanation is that this is due to the distorting effect of observational scatter and of the pulsational variability. For the following stars, the LSP phase curve was flagged as being non-sinusoidal: V1070 Cyg, Z Eri, RX Lep, and XY Lyr. Only two of the four have amplitudes less than 0.10 magnitude. Percy and Deibert (2016) found, from visual inspection, that the LSP phase curve of Y Lyn was clearly sawtooth, rather than sinusoidal; here, we find it to be sinusoidal.

3.5. Amplitude variations

Table 3 lists stars from Table 1 which had sufficient data to investigate variations in the LSP amplitude using the wavelet routine in VSTAR. The columns list: the name of the star, the range of the LSP amplitude in magnitudes, the number N of cycles of LSP amplitude increase and decrease, and the ratio of the length L of these cycles to the LSP, where L is the length of the dataset divided by N. See our previous papers, especially Percy and Abachi (2013), for more discussion of the determination of these. In particular: note that N and L are very approximate, because there is often less than one cycle of increase and decrease in the dataset - even though the dataset may be many decades long.

The median ratio of cycle length L to LSP is 21, slightly lower than the value 30 found by Percy and Abachi (2013); the difference is probably not significant. The LSP amplitudes vary by typically a factor of two, again in agreement with the values found by Percy and Abachi (2013). Combining our results with those of Percy and Abachi (2013), there is no obvious

Figure 2. The ratio of LSP to pulsation period PP, as a function of PP , for the stars in Table 1. The shaded area represents a histogram of the data, with the scale at the top. The results are consistent with those of Percy and Deibert (2016), namely that the values cluster about 5 and 10 , depending on whether the pulsation period is the fundamental period or the first overtone.

Figure 3.The visual or V pulsation amplitude in magnitudes versus pulsation period. As is well known from previous studies (reviewed by Kiss and Percy 2012), the shortest-period stars have the smallest amplitudes; radial pulsational instability sets in at spectral type approximately M0III.

Figure 4. The PP amplitude as a function of LSP amplitude (both visual or V, in magnitudes), for the stars in Table 2. For longer-period stars, Percy and Deibert (2016) found that the LSP amplitude was typically 0.2 magnitude. For the shorter-period stars, both the LSP amplitude and the pulsation amplitude are approximately equal. Both radial pulsation and the LSP phenomenon set in at spectral type about M0III.
correlation between L/LSP and pulsation period, i.e. with the radius of the star.

3.6. Notes on individual stars

χ Aqr The V data give periods of 40.2 and 229 days, but the amplitudes are small. The visual data do not give reliable periods.

RZ Ari The visual and V data give the same pulsation period (56.5 days) but the LSP (507 days) is present in the V data only.

W Boo This star switches modes between 25 and 50 days (Percy and Desjardins 1996). The present V data give a strongest period of 25.7 days. The visual and V data both give an LSP of 358-365 days, with small amplitude; it is suspiciously close to one year, and may be spurious.

VZ Cam There are no significant peaks in the visual or V data.
RS Cnc The pulsation period of 240.8 days is present in both the visual and V data. There is a possible LSP of 2,050 \pm 100 days.

DM Cep No periods could be found.
FZ Cep The V data give periods of 81.8 and 743 days. The visual data are inconclusive.

TCet The pulsation period may be 161 or 288 days; these are aliases. The LSP may be 1,908 days, but this too may be an alias.

FS Com The visual and V data both give a pulsation period of 55.7 days. The V data give an LSP of 689 days, in agreement with the result of Percy et al. (2008). The visual data do not show an LSP.

GK Com The results are uncertain.
W Cyg The visual data give periods of 132 and 259 days, as do the V data. We assume these to be the fundamental and first overtone periods. There is no evidence for an LSP.
$A B C y g$ The V data give periods of 69.3 and 521 days. The visual data give an LSP of 529 days, but the pulsation period is uncertain.

V973 Cyg The visual data give periods of 40.5 and 362 or 394 days. The V data give periods of 36.5 and 391 days. In each case, the amplitude is small.

V1070 Cyg The visual data give periods of 62.8 and 639 days. The V data are inconclusive.

V1339 Cyg The visual and V data both give pulsation periods of 34.06 days. The visual data give an LSP of 339 days, but the amplitude is only 0.02 magnitude, so it is uncertain.
$E U$ Del The visual data give periods of 62.55 and 623.8 days. The V data give periods of 62.52 and 629.3 days. This star is a "prototype" of small-amplitude pulsating red giants.
$V W$ Dra The data are noisy.
AT Dra Data are plentiful, but somewhat noisy. There are no significant peaks.

AZ Dra The visual data give a pulsation period of 44.4 days. The visual and V data both give an LSP of 357-360 days, with amplitudes about 0.10 magnitude. The period may be spurious.

Z Eri Both the visual and V data give periods of 78.5 and 730 days.

RR Eri The V data give periods of 92.5 and 742 days. The former is weakly present in the visual data, but not the latter. The GCVS period is 97 days.

IS Gem Non-variable.
η Gem The pulsation period (232 days) is present in both the visual and V data, but there is no obvious LSP.

X Her The General Catalogue of Variable Stars (GCVS; Samus et al. 2012) gives a period of 95 days; we find 176 days. ST Her Both the visual and V data give periods of 151 or 257 days. These are aliases, and we cannot choose between them. AK Hya The data are noisy; there are no convincing peaks.

Table 3. Amplitude variations in the LSPs in shorter-period red giant stars.

Star	LSP amp	N cycles	L/LSP
θ Aps	$0.07-0.17$	0.75	34
RT Cnc	$0.05-0.15$	4	8
TU CVn	$0.02-0.06$	2	50
SS Cep	$0.07-0.16$	1.5	26
AF Cyg	$0.05-0.11$	1.5	21
V1070 Cyg	$0.04-0.06$	1.5	16
U Del	$0.14-0.26$	0.5	21
CT Del	$0.02-0.18$	1.7	20
Z Eri	$0.08-0.19$	2	21
X Her	$0.04-0.25$	1	60
g Her	$0.08-0.22$	0.5	46
RX Lep	$0.05-0.13$	2	18
Y Lyn	$0.15-0.40$	0.5	32
SV Lyn	$0.03-0.10$	2	18
XY Lyr	$0.03-0.07$	1	16
TV Psc	$0.02-0.10$	1.25	40
q4 Ser	$0.07-0.12$	1.25	17
W Tri	$0.06-0.10$	1.75	20
ST UMa	$0.03-0.12$	2	24
TV UMa	$0.03-0.06$	2	15
V UMi	$0.03-0.20$	0.75	26
FP Vir	$0.06-0.17$	1.5	33

Figure 5. The similarity of the pulsation phase curve to a sine curve, as a function of pulsation amplitude in magnitudes. Stars with small pulsation amplitudes may have phase curves which differ slightly from sine curves, perhaps because observational scatter distorts the phase curve.

Figure 6. The similarity of the LSP phase curve to a sine curve, as a function of the LSP amplitude in magnitudes. Stars with smaller LSP amplitudes may have LSP phase curves which differ slightly from sine curves, perhaps because observational scatter and the pulsational variability distort the LSP phase curve.

IN Hya The V data suggest a pulsation period of 87.9 days and an LSP of 693 days. The visual data are less clear, but may indicate a pulsation period of 85.8 days.

SS Lep Probably non-variable.
Y Lyn GCVS gives a period of 110 days; we get 133.2 days.
R Lyr The visual and V data give a period of 53 ± 10 days. There is no LSP (Percy et al. 2008).

V614 Mon The pulsation period is unclear, and the LSP in both the visual and V data is dangerously close to one year.

V533 Oph The visual data give periods of 55.3 and 398 days. The V data give periods of 60.0 and 405 days.
ρ Per The visual and V data give the same pulsation period (55 ± 0.5 days) but the LSP (723 days) is visible in the V data only.

TV Psc The periods from the visual (55.1 days) and V data (55.0 days) are consistent, even though the amplitudes are small- 0.06 and 0.02 magnitude, respectively-but the LSP is uncertain: 403 days from the visual data, and 546 days from the V data, both seemingly well-determined.

TX Psc No reliable periods could be found.
XZ Psc No reliable periods could be found.
V449 Sco There are no significant peaks.
CE Tau The pulsation period (105 ± 2 days) and the LSP (1280 ± 10 days) are present in both the visual and V data.

TV UMa The visual data give periods of 53.8 and 656 days; the V data give periods of 50-60 and 627 days.

VW UMa The visual data give periods of 65.9 and 624 days; the V data give periods of 66.2 and 618 days.

VY UMa The visual data give periods of 121.8 and 1,200 days. The V data are less certain, but suggest periods of 125 and 1,160 days.

SW Vir The visual and V data give pulsation periods of 155.3 and 154 days, respectively. The LSP is uncertain, but may be 1647 days.

EV Vir The data are too sparse to yield a result.
FH Vir The V data give a pulsation period of 59.6 days, in reasonable agreement with the GCVS period of 70 days. The LSP may be about 350-370 days, but this is dangerously close to a year.

FP Vir The visual data give periods of 62.8 and 383 days; the V data give periods of 67.0 and 369 days.

4. Discussion

We must emphasize the challenges and consequent uncertainties of our work: the amplitudes of our stars are small; the data are primarily visual, so they have limited accuracy and the possibility of spurious signals. Despite the decades-long database, some of the phenomena that we are studying would benefit from an even longer one.

Our results should provide additional constraints on the cause of the LSP phenomenon. That cause must be able to act in lower-luminosity stars as well as higher-luminosity ones. At the same time, its amplitude must approach zero in the lowest-luminosity pulsators, as the pulsation amplitude does. And, whatever causes the cyclic changes in LSP amplitudes must operate over the entire period/luminosity range. Wood (2015) also shows (his Figure 1) that LSPs extend to the lowest luminosities-though sparsely-in the Large Magellanic Cloud.

It also appears that LSPs occur on both the red giant branch and on the asymptotic giant branch. The LSP mechanism must explain the tight correlation between the LSP and the fundamental pulsation period, and the consistency of the LSP amplitude variations over the entire LSP range. It must also explain the large prevalence of LSPs-over 30 percent at all luminosities. It cannot be dependent on some rare process or configuration in the star.

Several possible causes of LSPs have been suggested in the literature e.g. Nicholls et al. (2009). Some do not match all of the observations. Others are inconsistent with theoretical predictions, in their present form. Percy and Diebert (2016) discussed the possibility of some form of rotational variability, but there were significant problems with that hypothesis. It is possible, of course, that different mechanisms act in different stars. V Hya, for instance, may be a form of eclipsing binary.

Saio et al. (2015) proposed that oscillatory convective pulsation modes might be a possible explanation for the LSPs. This hypothesis had some problems, but they might be overcome by a better treatment of convection; the authors used the standard mixing-length theory of convection. Based on the constraints listed above, this hypothesis is very attractive, but the "problem of the LSPs" must be considered unsolved at this point in time.

Are there red giants with LSPs but no primary (pulsation) periods? Probably not, because almost all red giants cooler than M0III are unstable to pulsation. But it might be worth looking at late K giants to see if any of them varied with periods 5-10 times greater than the expected fundamental mode period.

5. Conclusions

We have used AAVSO visual and PEP data to determine improved periods and amplitudes of lower-luminosity, shorterperiod pulsating red giants. Our results extend those of Percy and Deibert (2016) to stars with shorter periods-down to 20-30 days. As red giants expand, radial pulsation becomes detectable in early type giants, with periods of about 20 days. So does the LSP phenomenon. With increasing period, the pulsation and LSP amplitudes both increase, and are approximately equal on average. When the period is longer than about 100 days, the LSP amplitude levels off at 0.1 to 0.2 magnitude. The LSP is about five times the fundamental pulsation period in these shorter-period stars, as it is in longer-period ones, and the LSP amplitude rises and falls on a time scale of about 20 LSPs. The LSP phenomenon thus extends to the shortest periods. Its nature and cause, however, are still unknown, but it must be able to operate in stars with shorter periods, warmer temperatures, and lower luminosities.

6. Acknowledgements

We thank the AAVSO observers who made the observations on which this project is based, the AAVSO staff who archived them and made them publicly available, and the developers of the vStar package which we used for analysis. This paper is based, in part, on a short summer research project by undergraduate astronomy and physics student co-author HL.

We acknowledge and thank the University of Toronto WorkStudy Program for financial support. This project made use of the SIMBAD database, maintained in Strasbourg, France.

References

Benn, D. 2013, vsTAR data analysis software (http://www.aavso.org/ node/803).
Kafka, S. 2016, observations from the AAVSO International Database (https://www.aavso.org/aavso-international-database).
Kiss, L. L., and Percy, J. R. 2012, J. Amer. Assoc. Var. Star Obs., 40, 528.
Nicholls, C. P., Wood, P. R., Cioni, M.-R. L., and Soszyński 2009, Mon. Not. Roy. Astron. Soc., 399, 2063.
Percy, J. R. 2015, J. Amer. Assoc. Var. Star Obs., 43, 223.
Percy, J. R., and Abachi, R. 2013, J. Amer. Assoc. Var. Star Obs., 41, 193.
Percy, J. R., and Bakos, A. G. 2003, in The Garrison Festschrift, ed. R. O. Gray, C. J. Corbally, and A. G. D. Philip, L. Davis Press, Schenectady, NY, 49.

Percy, J. R., and Deibert, E. 2016, J. Amer. Assoc. Var. Star Obs., 44, 94.
Percy, J. R., and Desjardins, A. 1996, Publ. Astron. Soc. Pacific, 108, 847.
Percy, J. R., Desjardins, A., Yu, L., and Landis, H. J. 1996, Publ. Astron. Soc. Pacific, 108, 139.
Percy, J. R., and Guler, M. 1999, J. Amer. Assoc. Var. Star Obs., 27, 1.
Percy, J. R., Mashintsova, M., Nasui, C. O., Palaniappan, R., Seneviratne, R., and Henry, G. W. 2008, Publ. Astron. Soc. Pacific, 120, 523.
Percy, J. R., Wilson,, J. B., and Henry, G. W. 2001, Publ. Astron. Soc. Pacific, 113, 983.
Saio, H., Wood, P. R., Takayama, M., and Ita, Y. 2015, Mon. Not. Roy. Astron. Soc., 452, 3863.
Samus, N. N., et al. 2012, General Catalogue of Variable Stars, Sternberg Astronomical Institute, Moscow (GCVS database, http://www.sai.msu.su/gcvs/gcvs/index.htm).
Wood, P. R. 2015, Mon. Not. Roy. Astron. Soc., 448, 3829.

High-Cadence B-Band Search for Optical Flares on CR Draconis

Gary A. Vander Haagen
Stonegate Observatory, 825 Stonegate Road, Ann Arbor, MI; garyvh2@gmail.com

Received November 22, 2016; revised December 16, 2016, January 12, 2017; accepted January 12, 2017

Abstract

The high-cadence search at 50 samples/sec of CR Dra revealed one B-band flare of 560 ± 30 seconds' duration, and 30-mmag peak above the mean. Three additional potential low-level flares could not be confirmed. The search for fast sub-second flares was conducted with negative results. The study collected 1.15×10^{7} photometric measurements over 64.16 hours on 27 nights from May 6, 2016, through October 25, 2016. This represents a flare rate of 0.016 flare/hour. The CR Dra binary has resolved orbital components with established orbital elements. From this flare and historical flare events, any correlation between the system components' calculated linear separation and flare activity level could not be confirmed.

1. Introduction

CR Draconis is one of approximately 100 nearby flare stars within 25 pc , a short period young Me dwarf binary type M5.6V (Simbad 2016), B-magnitude 10.92, HIP 79796. The flaring of the young Me dwarf star systems is related to their stage of evolution. That is, almost all dwarf stars possess the ability to flare during an early portion of their evolution and some of low luminosity can stay in this stage for 10^{10} years or longer (Mirzoyan 1990). Factors influencing this evolutionary process are still under study, with stellar rotation, magnetic fields, total mass, and potentially their component separation being contributors. Tamazian et al. (2008) presents a good summary of the current theories for flaring of these systems. One recent study area is the relationship between flares and the rapid changes in their stellar magnetic field configuration and coronal mass ejections (CME). Manchester et al. (2005) describes a model whereby the CME drives "fast-mode" shock from the stellar surface to distances of approximately 1 AU with consequent plasma and magnetic field changes, which may affect flare activity. This theory has researchers looking for nearby binaries with short periods and known orbits to look for correlation between component separation within $\sim 2 \mathrm{AU}$ or less and increased flare rates or flux energy levels. For this reason alone, the short period binary CR Dra is of interest in understanding the relationship, if any, between flaring and magnetic field interaction of close partners.

CR Dra is one of a small number of nearby flare stars less than 25 pc distant with the potential for resolving the
individual bodies and calculating orbit and dynamical mass. Tamazian et al. (2008) used speckle measurements to refine the previous work of Blazit et al. (1987) to resolve the twobody system. These data revealed a highest probability mass sum of 1.00 Ms , a dynamical parallax of 58.43 mas or 17.4 pc , an orbital period of 4.040 ± 0.005 years, and orbital elements with ephemeris for the years 2008-2013. With these data the correlation between the bodies' orbital separation and flaring were studied as proposed by Manchester et al. (2005). The very limited historical flare data (Table 1) were superimposed on the calculated orbital positions (Tamazian et al. 2008), and revealed "no plausible correlation between flaring activity and linear distance between components."

The objective of this search was to conduct a high-cadence photometric study to capture conventional longer flares and also any solo or short duration sub-second flares preceeding, during, or following the main outburst. Such data should improve the granularity of knowledge of an outburst event and potentially capture very fast solo events missed by conventional long integration photometry (Vander Haagen 2013, 2015). These data will also be resampled for longer flare analysis. In addition, any flare data will be correlated with the component orbital position.

2. Optical system, data collection, and analysis tools

The optical system consisted of a $43-\mathrm{cm}$ corrected DallKirkham scope, a high-speed silicon photomultiplier (SPM), and a data acquisition system capable of sub-millisecond data collection times. The SPM was chosen for this application

Table 1. The historical data for CR Dra flares show the observation time span, detection results, linear separation distance (d) in AU, and flare rates. Flare rates were generally not cited (-) or total observing time was not provided to enable calculation.

Observation Date	Flares Detected	$\begin{gathered} \text { Distance (d) } \\ A U \end{gathered}$	Flare Rate	Reference
1968 May 28-July 14	none	2.59-2.34	0	Cristaldi and Rodono (1970)
1970 May 11-June 18	1 flare	2.45-2.52	-	Cristaldi and Longhitano (1979)
1971 July 1	1 flare	2.95	-	Cristaldi and Rodono (1973)
1974 June 7	1 flare	2.47	0.025 flares/hour	Kareklidis et al. (1977)
1974 June	low activity	2.47	-	Mahmoud (1991)
1975 June-August	none	2.96-2.93	0 flares, 46.9 hours	Mahmoud et al. (1980)
1978 May 10-17	1 flare	2.41	-	Anderson (1979)
1980 July 19-20	none (Einstein)	2.41	0	Ambruster et al. (1987)
1991 June	none (ROSAT)	2.95	0	Tsikoudi and Kellett (1997)
2007 March-July	none	2.78-2.93	0	Tamazian et al. (2008)
2007 April-July	20 flares	2.83-2.92	-	Dal (2012)

because it has sensitivity comparable to a standard single channel vacuum photomultiplier yet a more robust mechanical and electrical design with the disadvantage of higher dark counts (Vander Haagen 2011).

The optical system is shown in Figure 1. The incoming beam is split approximately $85 / 4$ with the reflected portion passing through the optical filter, an f-stop yielding a 57 arcsecond field, and onto the SPM detector. A wide bandwidth pulse amplifier amplifies the SPM signal, producing a $2-3$ volt pulse of approximately 50 ns for each converted photon. The photon pulses are sent to a PC-based data acquisition system where they are gated and counted based upon the collection rate. A $20-\mathrm{ms}$ gate was used for measurements, generating a 50 Hz data collection rate or 50 samples/second. The balance of the incoming beam passes through the beam splitter to a conventional CCD camera used for initial alignment, guiding, and measurement of both the guide star flux and background flux. The target flux counts along with GPS 1 -second time stamps are recorded in the DAQ Log File by the data acquisition system (Vander Haagen and Owings 2014). The CCD Data and Control stream consists of reference and background flux values plus pixel counts for each guide star sample, typically every 5 seconds. These values are stored in the AG (auto-guider) Tracker Log file.

Upon completion of the night's search the DAQ Log File and the CCD's AG Tracker Log File are merged and parsed so every target data point is matched to the time Tracker data with the target counts corrected for the SPM dark counts and sky background in a quadrature calculation, and each sample GPS time-stamped. This parsing operation results in an integrated file with all constituents ready for analysis, with each file containing up to one million sample lines each containing target, reference, and background data. Files of this size are too large for spreadsheet analysis but are easily analyzed using signal processing software such as sigview (SignalLab 2016). The files are reviewed and can be processed using a variety of filters,

Figure 1. The optical train pictorial shows the pellicle beam splitter with both reflected and pass-through beams. The reflected beam passes through the narrow band filter, aperture, and onto the silicon photomultiplier (SPM). The pellicle can be flipped to allow 100% light transmission for initial target alignment using the CCD camera. The SPM is mounted on a X-Y stage for precise centering of detector to the centerline of the CCD camera. Guiding is provided with pellicle in position shown.
time domain transforms, and statistical tools. After reviewing the high speed data for fast flares the data were resampled using SIGview to 2 -second bins for the longer flare search. The same reference star is used for each run. Since the prime flare attributes for analysis are the ratio of peak flux to mean flux, duration, and the flare profile, the data are not corrected for air mass.

3. Flare search

The study objective was capturing high time-resolution flaring activity connected with longer duration conventional flares and short duration solo flares. Very short flares of 10 to 100 ms duration have been observed unconnected with conventional flaring activity. These very short flares generally consisted of one or more points at 3σ or higher with a peak at $4-10 \sigma$. A 50 ms duration flare was reported for EV Lac in the U-B band by Zhilyaev and Romanjuk (1990) and simultaneous U and B-band flares on BY Dra (Zalinian and Tovmassian 1987). Vander Haagen (2013) also reported very short duration flares on AR Lac, II Peg, and UX Ari of 30 to 85 ms duration with peaks $0.29-0.51$ magnitude above the mean.

A criterion was developed to isolate these short duration flares in very large sample sizes: flares must consist of a minimum of three consecutive data points, two at or above 3σ and one at or above 5σ. Since the minimum number of photons per gate was always 100 or more, normal distribution statistics were used to compute the standard deviation. Statistics were collected 600 seconds prior to the event where possible using digital signal processing software (SignalLab 2016). This process is similar in direction to that followed by flare searches (Byrne et al. 1994) and as described by Vander Haagen (2015). The probability of this sequence being a random event is $5.2 \times 10^{-13} \mathrm{~N}$, where N is the number of integrations or samples taken during the observing interval and σ is for the positive events only. With N ranging from 1 to 2×10^{6} samples during an observing interval the probability of the event sequence being random is appropriately small. This criterion was used for each of the data sets to isolate potential short duration flares.

The search for slower or longer flares with small flux change was best served by resampling to a longer gating period of two seconds. Searching for such signals in the 100 mmag or lower range with durations of minutes or longer at low S / N ratios is difficult amidst all high frequency noise. All the data groups were reviewed at both the $50 \mathrm{~s} / \mathrm{sec}$ and the resampled $0.5 \mathrm{~s} / \mathrm{sec}$ rates.

4. CR Dra data collection and results

Data collection was conducted over 27 nights from May 6, 2016, through October 25, 2016 (Figure 2). The total data collection time was 64.16 hours, or 231 Ksec at 50 samples/ sec. Using a $500-\mathrm{nm}$ low pass filter combined with the SPM response the resultant band pass approximates standard B-band. B-band was chosen since CR Dra emits greater flare energy at shorter wavelengths (Cristaldi and Longhitano 1979). The U-band would have been the best choice for low-level flare detection but the SPM detector has very little response in that region.

Figure 2. CR Dra data collection span of 27 nights from May 6 through October 25, 2106. The y-axis is in UT (seconds) for the date specified, showing the nightly time span when data were acquired, e.g., 7201 sec UT $=02: 00: 01$ UT.

Figure 3. 2016-09-27, CR Dra data resampled at $0.5 \mathrm{~s} / \mathrm{sec}(2 \mathrm{sec}$ gating period) showing $30 \mathrm{mmag}, 560 \pm 30$ seconds duration flare with 503 mean and 517 peak (4.1σ). The solid black line is a 20 -sample running-average plot. CR Dra is a steady 10.92 B -mag star under non-flaring conditions. The time axis is in UT (seconds) for the date specified, e.g., $7201 \mathrm{sec} \mathrm{UT}=02: 00: 01 \mathrm{UT}$.

Figure 4. 2016-09-27 CR Dra axis expanded to show greater flare detail and the duration measurement. Sample rate is $50 \mathrm{~s} / \mathrm{sec}$. Duration is measured between the approximate points where flux exits and returns to the mean value of 503 counts (horizontal line) or $560 \pm 30 \mathrm{sec}$. The time axis is in UT (seconds) for the date specified, e.g., $7201 \mathrm{sec} \mathrm{UT}=02: 00: 01 \mathrm{UT}$.

Figure 5, binary component linear separation calculated using the orbital elements from Tamazian et al. (2008). Highlight shows orbital position of 2016-09-27 flare at 2.75 AU.

No short duration flares were detected using the statistical criteria over the full 1.15×10^{7} measurement data set.

All data sets were resampled using two-second gating, $0.5 \mathrm{~s} / \mathrm{sec}$, and reviewed for flare activity. Figure 3 shows a 2016-09-27 flare of $30 \mathrm{mmag}, 4.1 \sigma$, and 560 ± 30 seconds' duration. The graph scale is expanded in Figure 4 to show greater instantaneous detail and the flare duration as measured at the mean quiescent flux crossing line. The flare occurred at the two-body linear separation of 2.75 AU as shown in the orbital plot (Figure 5). There were three other potential low level flares, two on 2016-10-09 and one on 2016-08-23, that could not be confirmed due to unstable atmospheric conditions and the poor S / N of the target and reference data.

5. Conclusions

In conclusion, a statistical criterion was used to isolate short duration optical flares from random photon events. No short duration flares were detected over the 64.16-hour observing period. One 560 -second duration flare was detected with peak 30 mmag above the mean yielding a flare rate of 0.016 flare/ hour. The flare rate is the prime indicator of activity and there are insufficient data for statistical analysis. However, the flare rate and magnitude are consistent with those reported by Kareklidis et al. (1977) at 2.47 AU linear separation, but likely a substantially lower rate than $\mathrm{Dal}(2012)$ at $2.83-2.92 \mathrm{AU}$, should the rate been provided.

The 0.016 flare/hour does not confirm or disapprove the conclusion of Tamazian et al. 2008 that there is no correlation between activity level and component separation. The activity level from the Dal (2012) search in which 20 flares were detected at 2.83-2.92 AU does help the argument. However, until a search is conducted close to the minimum body separation of 2.1 AU, where flare rates and/or flux increases are theorized, a firm conclusion seems premature. There will be an opportunity early in the fall of 2017 when the binary is at minimum linear separation to test the fast-mode shock hypothesis.

6. Acknowledgements

Thanks are expressed to L. E. Owings for his collaboration on the data pipeline and writing of the two software programs necessary for data reduction.

References

Ambruster, C. W., Sciortino, S., and Golub, L. 1987, Astrophys. J., Suppl. Ser., 65, 273.

Anderson, C. M. 1979, Publ. Astron. Soc. Pacific, 91, 202.
Blazit, A., Bonneau, D., and Foy, R. 1987, Astron. Astrophys., Suppl. Ser., 71, 57.
Byrne, P. B., Lanzafame, A. C., Sarro, L. M., and Ryans, R. 1994, Mon. Not. Roy. Astron. Soc., 270, 427.
Cristaldi, S., and Longhitano, M. 1979, Astron. Astrophys., Suppl. Ser., 38, 175.
Cristaldi, S., and Rodono, M. 1970, Astron. Astrophys., Suppl. Ser., 2, 223.
Cristaldi, S., and Rodono, M. 1973, Astron. Astrophys., Suppl. Ser., 10, 47.

Dal, H. A. 2012, Publ. Astron. Soc. Japan, 64, 82.
Kareklidis, G., Mavridis, L. N., and Stavridis, D. C. 1977, Inf. Bull. Var. Stars, No. 1356, 1.
Mahmoud, F. M. 1991, Astrophys. Space Sci., 186, 113.
Mahmoud, F. M., Mavridis, L. N., Stavridis, D., and Varvoglis, P. 1980, Inf. Bull. Var. Stars, No. 1799, 1.
Manchester, W. B. IV, et al. 2005, Astrophys. J., 622, 1225.
Mirzoyan, L. V. 1990, in Flare Stars in Star Clusters, Associations and the Solar Vicinity, ed. L. V. Mirzoyan, B. R. Pettersen, M. K. Tsvetkov, IAU Symp. 137, Kluwer Academic Publishers, Dordrecht, 1.
SignalLab. 2016, sIGVIEw 2.8 software for DSP applications (http://www.sigview.com/index.htm).
Simbad Astromical Database. 2016, (http://simbad.u-strasbg. fr/simbad/).
Tamazian, V. S., Docobo, J. A., Balega, Y. Y., Melikian, N. D., Maximov, A. F., and Malogolovets, E. V. 2008, Astron. J., 136, 974.
Tsikoudi, V., and Kellett, B. J. 1997, Mon. Not. Roy. Astron. Soc., 285, 759.

Vander Haagen, G. A., 2011, in The Society for Astronomical Sciences 30th Annual Symposium on Telescope Science, Society for Astronomical Sciences, Rancho Cucamonga, CA, 87.
Vander Haagen, G. A. 2013, J. Amer. Assoc. Var. Star Obs., 41, 114.
Vander Haagen, G. A. 2015, J. Amer. Assoc. Var. Star Obs., 43, 219.
Vander Haagen, G. A., and Owings, L. E. 2014, in The Society for Astronomical Sciences 33rd Annual Symposium on Telescope Science, Society for Astronomical Sciences, Rancho Cucamonga, CA, 191.
Zalinian, V. P., and Tovmassian, H. M. 1987, Inf. Bull. Var. Stars, No. 2992, 1.
Zhilyaev, B. E., and Romanjuk, Ya. O. 1990, in Flare Stars in Star Clusters, Associations and the Solar Vicinity, ed. L. V. Mirzoyan, B. R. Pettersen, M. K. Tsvetkov, IAU Symp. 137, Kluwer Academic Publishers, Dordrecht, 35.

Photometric Analysis of HD 213616: a Multi-modal $\boldsymbol{\delta}$ Scuti Variable Star

Vance Petriew
P.O. Box 9 Station main, White City, SK S4L 5B1, Canada; vance.petriew@sasktel.net

Horace A. Smith
Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA; smith@pa.msu.edu

Received November 28, 2016; Revised December 15, 2016; accepted December 16, 2016

Abstract

We analyzed new photometry of HD 213616, showing that, instead of being a W Ursae Majoris eclipsing binary, it is a multimode δ Scuti star of relatively high amplitude. Three independent pulsation modes were identified in a Fourier analysis of the photometry, in addition to several combination pulsation frequencies.

1. Introduction

In a quest for brighter eclipsing binary targets from the online AAVSO's Variable Star Index (VSX; Watson et al. 2014), the star HD 213616 (R.A. $22^{\mathrm{h}} 32^{\mathrm{m}} 07.8^{\mathrm{s}}$, Dec. $+39^{\circ} 47^{\prime}$ 56.2" (2000.0)) was randomly selected for an all-night time series run. After one night of photometry, it was clear that the current VSX classification of HD 213616 as an EW (W Ursae Majoris) eclipsing variable was incorrect. As we will show in the remainder of this paper, HD 213616 instead appears to be a δ Scuti (DSCT) type variable.

2. Data

To better capture this variable star's behavior, multiple nights of data were collected during the 2015 and 2016 observing seasons. Data were collected late into season one using an SBIG ST7-XME CCD camera coupled to a Celestron CPC-800 GPS telescope. The CCD camera is equipped with a single Johnson V filter which was employed for all observations. The effective focal length is 906 mm . The $9-\mu \mathrm{m}$ pixels of the SBIG camera provide an image scale of 2.05 arcseconds per pixel.

In 2016, the same telescope and CCD camera were used to collect more data, bringing the total number of aperture photometry data points used in this analysis to 10,524 . The date range of the observations is HJD 2457291 to HJD 2457635.

The reference star used for photometry was TYC 3205-1759-1 (R.A. $22^{\mathrm{h}} 30^{\mathrm{m}} 28.4^{\mathrm{s}}$, Dec. $+39^{\circ} 46^{\prime} 09.5^{\prime \prime}(2000.0)$). When the photometry was entered into the AAVSO International Database (AID; Kafka 2016), a V magnitude of 9.08 was adopted for the reference star. As of Data Release 9, the V magnitude for TYC 3205-1759-1 from the APASS catalogue (Henden and Munari 2014) is 9.087 ± 0.057. Note that the comparison star is quite red, with an APASS B-V value around 1.4. The check star used was TYC 3205-1808-1 (R.A. $22^{\mathrm{h}} 30^{\mathrm{m}} 11.1^{\mathrm{s}}$, Dec. $+39^{\circ} 36^{\prime} 28.6^{\prime \prime}(2000.0)$). Integration times for each frame were 30 seconds, which produced SNR values above 300 for both the variable and the reference star. The software maxim dl version 5.01 (Diffraction Limited 2012) was used to perform differential aperture photometry of the dataset. Typical aperture sizes are 7 to 9 pixels in size with a gap of 8 and an annulus of 10 pixels. All frames were bias, dark, and flat field corrected. Data
were exported from maxim dl and into microsoft excel to calculate error bars for the data based on the formula

$$
\begin{equation*}
\text { Error }=\left[(\sigma(\mathrm{k}-\mathrm{c}))^{2}+(1 / \mathrm{SNR})^{2}\right]^{0.5} \tag{1}
\end{equation*}
$$

following the recommendation of Koppleman (2005), where $\sigma(\mathrm{k}-\mathrm{c})$ is the standard deviation for the comparison star minus check star magnitudes and SNR is the signal-to-noise ratio of the measurement.

The typical uncertainty of differential V magnitudes for a single observing session is 0.008 magnitude, with the largest uncertainty being around 0.014 magnitude. There may be slight offsets from night to night but these typically run in the range of 0.01 magnitude and were not accounted for in the dataset. The photometric data points were not extinction corrected. The distribution of the observations over time is shown in Figure 1. Figure 2 illustrates the variation of HD 213616 during four nights of observation. The photometry of HD 213616 has been entered into the AAVSO International Database.

Figure 1. Light curve for HD 213616 from 2015 (top panel) and 2016 (bottom panel).

Figure 2. Light curve of HD 213616 from the first four nights of observation.

In the remainder of this paper we present a Fourier analysis of the new photometry that supports the DSCT classification for this star. We also discuss the earlier observations of HD 213616 that suggested that the star was instead an EW variable.

3. Analysis

We Fourier-analyzed the photometric observations using the PERIOD04 routine (Lenz and Breger 2005). Scans were performed for the frequency range $0-50$ cycles / day for the 2015 and 2016 datasets individually (frequency resolution $\Delta v=10^{-4} \mathrm{~d}^{-1}$) and for the entire 2015-2016 dataset (frequency resolution $\Delta v=$ $10^{-5} \mathrm{~d}^{-1}$). Because the observations were obtained from a single site, we also inspected the spectral windows of the observations to gain insight into possible aliasing problems. We adopted an iterative approach to find significant frequencies, using PERIOD04 to identify the strongest frequency, cleaning the data to remove that frequency, rescanning, identifying the next strongest frequency, and repeating until we detected all the frequencies with amplitudes greater than about 4 times the typical noise in the spectrum. Results are shown in Table 1 for the frequencies detected and their amplitudes and phases. The numbers in parentheses are an estimate of the uncertainty in each quantity. PERIOD04 offers two ways of estimating uncertainties of derived parameters, a least squares error calculation and a monte carlo simulation. If one of these approaches gave a significantly larger uncertainty than the other, we adopted the larger uncertainty in Table 1. We also examined the effects that small changes in the PERIOD04 scanning parameters had upon the derived frequencies, amplitudes, and phases. In a few instances this suggested that the actual uncertainties should be slightly larger than the formal uncertainties returned by the PERIOD04 routine. If so, we chose the larger, more conservative, estimate of error.

In all of the analyses, three frequencies, $f 1, f 2$, and f 3 , were dominant. The frequency near $10.67 \mathrm{c} / \mathrm{d}$ could be interpreted as 2 fl , a harmonic of the fl frequency. Four other frequencies could be interpreted as combinations of the first three frequencies. In addition, for the entire 2015-2016 dataset, some power (amplitude 0.007 magnitude) was found at a frequency of $0.03905 \mathrm{~d}^{-1}$, corresponding to a period of 25.61 days. We are not certain of the reality of this frequency, since it is not seen in the separate analyses of the 2015 and 2016 observations, and because the corresponding period is within a factor of 1 or 2 of the total time spans covered by the 2015 and 2016 observations, taking each year separately.

Including just the $\mathrm{f} 1, \mathrm{f} 2, \mathrm{f} 3$, and 2 fl components in an analysis reduces the root mean square scatter in the 2015-2016 magnitudes from 0.083 mag . to a residual scatter of 0.017 mag. Including all of the components in the analysis further reduces the residuals to 0.011 magnitude, close to the expected observational uncertainty. For the 2015 observations alone, the corresponding numbers are 0.079 mag., 0.014 mag., and 0.010 mag. For the 2016 observations only, the corresponding numbers are 0.085 mag., 0.017 mag ., and 0.011 mag .

To illustrate the appearance of the Fourier spectrum, in Figure 3 we show a portion of the spectrum for the 20152016 observations. In Figure 4, we show the spectrum after the data have been prewhitened to remove the significant frequencies.

Table 1. Fourier analysis.

Frequency (c/d)	V (amplitude)	Phase	Identification
2015-2016			
5.33800(1)	0.0946 (1)	0.374(1)	f1
6.68087(1)	0.0289(1)	0.200(1)	f2
8.02710(1)	0.0429(1)	0.402(1)	f3
10.67595(2)	0.0111(2)	0.922(2)	2 fl
$1.34308(2)$	0.0095(2)	0.442(2)	f2-f1
2.68890(2)	0.0093(2)	0.119(3)	f3-f1
12.01582(3)	0.0061(2)	0.272(3)	$\mathrm{f} 1+\mathrm{f} 2$
13.36507(3)	0.0077(2)	$0.906(3)$	f1+f3
2015			
5.3381(1)	0.0948(3)	0.641(1)	f1
6.6798(2)	0.0282(2)	0.509(1)	f2
8.0275(1)	0.0415(2)	0.189(1)	f3
10.6711(4)	$0.0118(2)$	0.837(3)	2 fl
$1.3463(10)$	0.0060(2)	0.950(6)	f2-f1
2.6890 (6)	0.0093(2)	0.366(4)	f3-f1
12.0179(14)	0.0039(2)	0.391(8)	f1+f2
13.3670(6)	0.0070(3)	0.307(5)	f1+f3
2016			
5.3380 (1)	0.0942(1)	0.374(1)	f1
6.6809(1)	0.0294(1)	0.472(1)	f2
8.0268(1)	0.0437(1)	0.688(1)	f3
10.6770(2)	0.0116(1)	0.422(3)	2 fl
1.3446(2)	0.0125(1)	0.890(3)	f2-f1
2.6885(2)	0.0091 (1)	0.157(4)	f3-f1
12.0168(3)	0.0069(1)	$0.116(5)$	$\mathrm{f} 1+\mathrm{f} 2$
13.3657(3)	0.0078(1)	$0.606(3)$	f1+f3

Figure 3. A portion of the Fourier spectrum for the 2015-2016 observations before any frequency has been cleaned.

Figure 4. The residual Fourier spectrum for the 2015-2016 observations after the frequencies of Table 1 have been cleaned. Note that the amplitude scale is different from that of Figure 3.

Although the frequencies and amplitudes for the components in Table 1 are similar for the 2015-2016, 2015, and 2016 data, they are not identical, and, in fact, they sometimes differ by more than the adopted error bars. However, given the problems inherent when observations are from a single location, we hesitate to conclude that the year-to-year differences are real. New observations, particularly from multiple longitudes, would help in evaluating the stability of the frequency components observed in HD 213616.

4. Discussion

As noted above, the Variable Star Index (VSX) lists HD 213616 as a probable W Ursae Majoris eclipsing variable. The VSX lists a frequency of $2.6690 \mathrm{c} / \mathrm{d}$, which is half the frequency of the fl component found in this analysis. That result is based upon data from the WASP survey (Butters et al. 2010) that was obtained between HJD 2453154 and 2454669. There are 4,721 photometric points for HD 213616 listed in the SuperWASP public archive (http://www.superwasp.org/), although a few of these show large deviations from the others and are likely erroneous. HD 213616 is also identified as variable in the Chandra Variable Guide Star Catalog (Nichols et al. 2010), but with less than a day of observation those data are not sufficient for a period determination.

A period search analysis of the SuperWASP data using the periodogram software available on the NASA Exoplanet Archive (2016) website (http://exoplanetarchive.ipac.caltech. edu/) with a resolution of 0.0001 does, however, reveal the three dominant frequencies of Table 1, as well as aliases that differ by one or more cycles per day from those frequencies. In the analysis of the SuperWASP data the frequencies recovered that appear to correspond to $\mathrm{f} 1, \mathrm{f} 2$, and f 3 are: $5.3380 \mathrm{c} / \mathrm{d}$, $6.6811 \mathrm{c} / \mathrm{d}$, and $8.0272 \mathrm{c} / \mathrm{d}$. Although the SuperWASP data cover a longer time interval than the data in Table 1, there are fewer observations per day, raising the susceptibility to aliases with a different number of cycles per day.

The existence of three independent frequencies plus combination terms in the light curve of HD 213616 indicates that it is not a W UMa binary. Instead, it strongly indicates that HD 213616 is a high amplitude δ Scuti pulsator (HADS). HADS variables generally have one or more frequencies greater than $5 \mathrm{c} / \mathrm{d}$ and amplitudes greater than 0.3 magnitude. The magnitude range in Figure 1 and our derived periods would thus place HD 213616 within the HADS class. The F5 spectral type of HD 213616 in the SIMBAD database would be consistent with a δ Scuti identification, although it would be near the cool limit for such stars (Catelan and Smith 2015). Many HADS stars have one or two main periods which are often interpreted as being the radial fundamental and first overtone modes (Templeton 2000; Balona 2016). In double-mode HADS stars, the ratio of the periods is usually in the range $0.76-0.78$ (Furgoni 2016). In the case of HD 213616, however, we have three apparently independent frequencies, suggesting the existence of three modes. Nor do the period ratios of any combination of $\mathrm{f} 1, \mathrm{f} 2$, and $f 3$ fall within the 0.76 to 0.78 range.

HADS stars with three modes are not unknown. For example, KIC 6382916 was found to have modes with frequencies of $4.9107,6.4314$, and $8.0350 \mathrm{c} / \mathrm{d}$, reminiscent of the three
possible modes in HD 213616 (Ulusoy et al. 2013). However, for KIC 6382916, the amplitudes of the first two modes were comparable, while the third had a much smaller amplitude. The f1 frequency for HD 213616 has the largest amplitude but the amplitudes of $f 2$ and $f 3$ are not very different from one another and only 2 or 3 times smaller than the amplitude of $f 1$. If the two smallest frequencies for HD 213616 are interpreted as being the fundamental and first overtone radial modes, the period ratio of 0.799 would be within the range of period ratios observed for the two largest amplitude modes within δ Scuti stars observed by the Kepler mission that have five or more combination frequencies (Balona 2016). However, it is by no means certain that we can interpret f 1 and f 2 as fundamental and first overtone radial modes. HD 213616 might thus repay further study.

5. Acknowledgements

This research has made use of the NASA Exoplanet Archive, which is operated by the California Institute of Technology, under contract with the National Aeronautics and Space Administration under the Exoplanet Exploration Program. This research was made possible through the use of the AAVSO Photometric All-Sky Survey (APASS), funded by the Robert Martin Ayers Sciences Fund. We would also like to thank Matthew Templeton, Gerry Samolyk, Richard Huziak, and Gary Billings for their encouragement and for valuable discussions about this star.

References

Balona, L. A. 2016, Mon. Not. Roy. Astron. Soc., 459, 1097.
Butters, O. W., et al. 2010, Astron. Astrophys., 520, L10.
Catelan, M., and Smith, H. A. 2015, Pulsating Stars, WileyVCH, Weinheim, Germany.
Diffraction Limited. 2012, MAXIMDL image processing software (http://www.cyanogen.com).
Furgoni, R. 2016, J. Amer. Assoc. Var. Star Obs., 44, 6.
Henden, A., and Munari, U. 2014, Contrib. Astron. Obs. Skalnaté Pleso, 43, 518.
Kafka, S. 2016, variable star observations from the AAVSO International Database (https://www.aavso.org/aavso-international-database).
Koppleman, M. 2005, in The Society for Astronomical Sciences 24th Annual Symposium on Telescope Science, Society for Astronomical Sciences, Rancho Cucamonga, CA, 107.
Lenz, P., and Breger, M. 2005, Commun. Asteroseismology, 146, 53.
NASA Exoplanet Archive. 2015, periodogram (http:// exoplanetarchive.ipac.caltech.edu/).
Nichols, J. S., Henden, A. A., Huenemoerder, D. P., Lauer, J. L., Martin, E., Morgan, D. L., and Sundheim, B. A. 2010, Astrophys. J., Suppl. Ser., 188, 473.
Templeton, M. 2000, Ph.D. Thesis, New Mexico State Univ. Ulusoy, C., et al. 2013, Mon. Not. Roy. Astron. Soc., 433, 394.
Watson, C., Henden, A. A., and Price, C. A. 2014, AAVSO International Variable Star Index VSX (Watson+, 20062014; http://www.aavso.org/vsx).

A Photometric Study of the Near-Contact Binary XZ Persei

Edward J. Michaels

Stephen F. Austin State University, Department of Physics, Engineering, and Astronomy, P.O. Box 13044, Nacogdoches, TX 75962; emichaels@sfasu.edu

Received February 6, 2017; revised March 1, 2017; accepted March 1, 2017

Abstract

Presented are two sets of multi-band CCD photometry of the Algol-type binary XZ Persei. Photometric solutions were derived using the Wilson-Devinney program for each dataset. The solution results indicate XZ Per is a semi-detached, near-contact binary whose less-massive secondary star fills its Roche lobe. Asymmetries in the light curves were modeled by including a hot spot on the primary star. This spot is likely caused by impact heating from mass transfer. The orbital period was analyzed using 473 light minima spanning 90 years. Several alternating period changes were found superimposed on a long term secular period decrease. With continued mass and angular momentum loss, the separation between the stars will likely decrease until the primary fills its Roche lobe forming a contact binary.

1. Introduction

The General Catalogue of Variable Stars (GCVS; Samus et al. 2017) identifies XZ Persei (TYC 3328-3186-1, GSC 3328-3186) as a semi-detached Algol eclipsing system with an orbital period of 1.15163412 days and a spectral type of G1. Photometric orbital elements were first determined by Lavrov (1971). Geometric and physical parameters for this system were computed by Brancewicz and Dworak (1980) using an iterative method which indicated a semi-detached configuration. XZ Per is also included in a catalogue of 411 Algol-type binary stars (Budding et al. 2004). This catalogue gives an orbital inclination of 88°, a mass ratio of 0.69 , a distance of 250 pc , and spectral types for the primary and secondary stars of G1+[K1IV]. In a spectroscopic survey of late F-K eclipsing binaries, Popper (1996) found the primary star's spectral type to be F2-5. Many primary minima timings have been published going back to 1927. Several period studies have been completed on this system (Whitney 1959; Szafraniec 1960; Wood and Forbes 1963; Kreiner 1971; Mallama 1980; Qian 2001a). It has also been surveyed for a gaseous disk using time-resolved spectroscopy (Kaitchuck and Honeycutt 1982; Kaitchuck et al. 1985).

In this paper a photometric study of XZ Per is presented. The paper is organized into sections. The first complete set of multi-wavelength photometric observations for this star is presented in section 2. Orbital period changes are investigated in section 3, a light curve analysis is presented in section 4, results from the period study and light curve analysis are discussed in section 5 , and conclusions are stated in section 6.

2. Observations

XZ Per was observed photometrically with the $0.31-\mathrm{m}$ Ritchey-Chrétien telescope located at the Waffelow Creek Observatory (http://obs.ejmj.net/index.php). Images were acquired with a SBIG-STXL camera equipped with a KAF6303 E CCD ($9 \mu \mathrm{~m}$ pixels). Two complete data sets were collected. Images that comprise Data Set 1 (DS1) were taken in the Sloan $\mathrm{g}^{\prime}, \mathrm{r}^{\prime}$, and i^{\prime} passbands on fifteen nights in January and February 2016. Data Set 2 (DS2) images were acquired in the Johnson B and V passbands on eight nights in September
and October 2016. A total of 7,226 images were acquired, 4,648 in the Sloan passbands and 2,578 in the Johnson passbands. All the images were calibrated with bias, dark, and flat field frames taken before each night's observing run. mira software was used for calibration and ensemble differential aperture photometry of the light images (Mirametrics 2015). The instrumental magnitudes of XZ Per were converted to standard magnitudes using comparison star magnitudes taken from the AAVSO Photometric All-Sky Survey (APASS; Henden et al. 2014). The comparison and check stars used in this study are shown in Table 1. The finder chart in Figure 1 shows a nearby field star 8.1 " to the ENE of XZ Per. The light contribution from this star was easily removed by proper sizing of the rings when performing the aperture photometry. After converting the Heliocentric Julian Day (HJD) of each observation to orbital phase the folded light curves were plotted (see Figure 2). All light curves in this paper are plotted from phase -0.6 to 0.6 , with negative phase defined as $\varphi-1$. The check star's V passband observations are shown in the bottom panel of Figure 2 with the standard deviations shown in Table 1. The check star magnitudes were inspected each night and no significant variability was found. The observations have been archived and are accessible from the AAVSO International Database (Kafka 2015).

3. Analysis

3.1. Period study and ephemerides

The most recent study of orbital period changes for XZ Per was done by Qian (2001a). Since that study, many additional minimum timings have become available and were used in the present analysis. From the literature, 488 minima were found spanning the years 1927-2016. From the observations in this study, an additional seven new primary minima were obtained (Table 2). Using the linear ephemeris of Mallama (1980),

$$
\begin{equation*}
\text { HJD Min I }=2443507.47742+1.15163412 \mathrm{E} \text {, } \tag{1}
\end{equation*}
$$

the $(O-C)$ values were computed. All the minima timings and $(O-C)$ values are listed in Tables 2 and 3. The ephemeris diagram is shown in Figure 3. From the full set of minima, fifteen timings identified in Table 3 showed significant deviations from the

Table 1. Variable (V), comparison (C), and check (K) stars in this study.

Star	$\begin{gathered} R . A .(2000) \\ h \end{gathered}$	Dec. (2000)	B	V	g^{\prime}	r^{\prime}	i^{\prime}	$(B-V)$
XZ Per (V)	4.15768	+46.56686						
GSC3328-1649 (C1)	4.17230	+46.48831	$\begin{array}{r} 11.295 \\ \pm 0.076 \end{array}$	$\begin{array}{r} 10.570 \\ \pm 0.059 \end{array}$	$\begin{array}{r} 10.882 \\ \pm 0.052 \end{array}$	$\begin{array}{r} 10.372 \\ \pm 0.065 \end{array}$	$\begin{array}{r} 10.239 \\ \pm 0.043 \end{array}$	0.725
GSC3328-1055 (C2)	4.16805	+46.60359	11.662	$\begin{array}{r} 10.746 \\ \pm 0.012 \end{array}$	$\begin{array}{r} 11.167 \\ \pm 0.049 \end{array}$	$\begin{array}{r} 10.456 \\ \pm 0.012 \end{array}$	$\begin{array}{r} 10.116 \\ \pm 0.034 \end{array}$	0.916
GSC3328-2924 (C3)	4.16396	+46.50468	11.410	$\begin{array}{r} 10.911 \\ \pm 0.019 \end{array}$	$\begin{array}{r} 11.118 \\ \pm 0.037 \end{array}$	$\begin{array}{r} 10.795 \\ \pm 0.015 \end{array}$	$\begin{array}{r} 10.639 \\ \pm 0.039 \end{array}$	0.499
GSC3328-2029 (C4)	4.15812	+46.62578	11.837	$\begin{array}{r} 11.181 \\ \pm 0.025 \end{array}$	$\begin{array}{r} 11.447 \\ \pm 0.032 \end{array}$	$\begin{array}{r} 10.982 \\ \pm 0.010 \end{array}$	$\begin{array}{r} 10.761 \\ \pm 0.028 \end{array}$	0.656
GSC3328-985 (C5)	4.17478	+46.52096	$\begin{array}{r} 12.374 \\ \pm 0.008 \end{array}$	$\begin{array}{r} 11.386 \\ \pm 0.045 \end{array}$	$\begin{array}{r} 11.866 \\ \pm 0.010 \end{array}$	$\begin{array}{r} 10.957 \\ \pm 0.017 \end{array}$	$\begin{array}{r} 10.419 \\ \pm 0.000 \end{array}$	0.998
GSC3328-1883 (C6)	4.16236	+46.67258	$\begin{array}{r} 12.291 \\ \pm 0.008 \end{array}$	$\begin{array}{r} 11.725 \\ \pm 0.030 \end{array}$	$\begin{array}{r} 11.966 \\ \pm 0.035 \end{array}$	$\begin{array}{r} 11.574 \\ \pm 0.006 \end{array}$	$\begin{array}{r} 11.391 \\ \pm 0.033 \end{array}$	0.566
GSC3328-1869 (C7)	4.14996	+46.46364	$\begin{array}{r} 12.497 \\ \pm 0.038 \end{array}$	$\begin{array}{r} 11.810 \\ \pm 0.059 \end{array}$	$\begin{array}{r} 12.085 \\ \pm 0.034 \end{array}$	$\begin{array}{r} 11.601 \\ \pm 0.034 \end{array}$	$\begin{array}{r} 11.415 \\ \pm 0.059 \end{array}$	0.687
GSC3328-2491 (C8)	4.13869	+46.45859	$\begin{array}{r} 12.681 \\ \pm 0.049 \end{array}$	$\begin{array}{r} 12.064 \\ \pm 0.060 \end{array}$	$\begin{array}{r} 12.303 \\ \pm 0.033 \end{array}$	$\begin{array}{r} 11.921 \\ \pm 0.029 \end{array}$	$\begin{array}{r} 11.764 \\ \pm 0.067 \end{array}$	0.617
GSC3328-2529 (C9)	4.16223	+46.66057	$\begin{array}{r} 13.079 \\ \pm 0.006 \end{array}$	$\begin{array}{r} 12.260 \\ \pm 0.034 \end{array}$	$\begin{array}{r} 12.603 \\ \pm 0.029 \end{array}$	$\begin{array}{r} 11.982 \\ \pm 0.006 \end{array}$	$\begin{array}{r} 11.655 \\ \pm 0.020 \end{array}$	0.819
GSC3328-1641 (K)	4.14319	+46.54925	13.418	$\begin{array}{r} 11.829 \\ \pm 0.017 \end{array}$	$\begin{array}{r} 12.553 \\ \pm 0.025 \end{array}$	$\begin{array}{r} 11.244 \\ \pm 0.000 \end{array}$	$\begin{array}{r} 10.606 \\ \pm 0.020 \end{array}$	1.589
Standard deviation of check star magnitudes			± 0.016	± 0.008	± 0.008	± 0.006	± 0.006	
Observed check star magnitudes (K)			$\begin{array}{r} 13.421 \\ \pm 0.049 \end{array}$	$\begin{array}{r} 11.815 \\ \pm 0.023 \end{array}$	$\begin{array}{r} 12.532 \\ \pm 0.029 \end{array}$	$\begin{array}{r} 11.247 \\ \pm 0.023 \end{array}$	$\begin{array}{r} 10.607 \\ \pm 0.023 \end{array}$	

APASS comparison and check star magnitudes and errors. The observed check star magnitudes are the averages over all nights for each passband.

Table 2. New times of minima for XZ Per.

Epoch HJD 2400000+	Error	Type	Cycle	$O-C$
57400.7189	0.00012	ccd	12064.0	-0.07256
57422.5998	0.00010	ccd	12083.0	-0.07264
57423.7515	0.00013	ccd	12084.0	-0.07258
57430.6614	0.00010	ccd	12090.0	-0.07251
57666.7458	0.00004	ccd	12295.0	-0.07309
57667.8977	0.00006	ccd	12296.0	-0.07283
57689.7785	0.00005	ccd	12315.0	-0.07314

trend and were therefore not used in the analysis.
Using the $(O-C)$ residuals from Equation 1, a new linear ephemeris was computed by weighted least-squares solution. A weight of 1 was applied to visual and photographic timings, and 10 to PE and CCD observations. The new linear ephemeris is given by

$$
\begin{equation*}
\text { HJD Min } I=2457689.78840(8)+1.15163048(9) \mathrm{E}, \tag{2}
\end{equation*}
$$

and is shown overlaid on the $\mathrm{O}-\mathrm{C}$ data in Figure 3 (dashed line). The general $(O-C)$ trend indicates the orbital period appears to be slowly decreasing with embedded sudden alternating period

Figure 1. Finder chart for XZ Per (V), comparison (C1-C9), and check (K) stars.
jumps. This behavior was first noted by Qian (2001a), who found the period variation to consist of a secular period decrease with two superposed period jumps. Since that study, it appears several additional period jumps have occurred (see Figure 3). Assuming the $(O-C)$ data trend has a parabolic variation that is not a part of a longer repeating cycle, a weighted least-squares

Figure 2. Folded light curves for each observed passband. The differential magnitudes of the variable were converted to standard magnitudes using the calibrated magnitudes of the comparison stars. From top to bottom the light curve passbands are Sloan i', Sloan r', Johnson V, Sloan g', and Johnson B. The bottom curve shows the standard Johnson V magnitudes of the check star (offset +2.0 magnitude). The standard deviations of the check star magnitudes are shown in Table 1 . Error bars are not shown for clarity.

Figure 3. $(O-C)$ residuals from the linear ephemeris of Equation 1. The dashed line is the new linear fit of Equation 2 and the solid line the quadratic fit of Equation 3. Circles refer to visual and photographic data and triangles the PE and CCD data.

Figure 4. $(O-C)_{Q}$ residuals from the quadratic ephemeris fit. The line segments are several linear ephemerides that were fit to the residuals. Circles refer to visual and photographic data and triangles the PE and CCD data.
solution yields the following quadratic ephemeris:

$$
\begin{gather*}
\text { HJDMinI }= \\
2457689.7909(7)+1.15162587(6) \mathrm{E}-3.48(12) \times 10^{-10} \mathrm{E}^{2} . \tag{3}
\end{gather*}
$$

The quadratic fit to the $(O-C)$ observations is shown in Figure 3 (solid line) and the $(O-C)_{Q}$ residuals from the quadratic ephemeris are presented in Figure 4.

The $(O-C)_{Q}$ residuals clearly show the decreasing period is not smooth but punctuated by several alternating period changes. It is assumed that between the period jumps the orbital period is undergoing a steady decrease. From inspection of Figure 4, there appear to be 8 period jumps. To better characterize the period jumps, the $(O-C)_{Q}$ residuals were divided into nine segments (see Figure 4). Using the method of least-squares, a linear function given by

$$
\begin{equation*}
(O-C)_{Q}=\Delta \mathrm{T}+\Delta \mathrm{PE} \tag{4}
\end{equation*}
$$

was found for each segment to obtain the best fit to the $(O-C)_{Q}$ values. The computed $\Delta \mathrm{T}$ and $\Delta \mathrm{P}$ values for each segment are listed in Table 4. For any cycle E the orbital period, $P(E)$, can be computed by summing the ephemeris period $\left(\mathrm{P}_{\mathrm{E}}=1.15163412\right.$ days $)$, the period jump for the segment in which the cycle is located (ΔT), and the contribution from the secular period decrease using $\mathrm{dP} / \mathrm{dt}$ in units of days/day $\left(\mathrm{dP} / \mathrm{dt}=-3.48 \times 10^{-10} \mathrm{~d} \mathrm{~d}^{-1}\right)$. Using the following equation,

$$
\begin{equation*}
\mathrm{P}(\mathrm{E})=\mathrm{P}_{\mathrm{E}}+\Delta \mathrm{P}+\frac{\mathrm{dP}}{\mathrm{dt}} \mathrm{EP} \tag{5}
\end{equation*}
$$

the differences between the actual period $\mathrm{P}(\mathrm{E})$ and the ephemeris period P_{E} for each segment were computed and the results plotted in Figure 5. It is possible some of the early jumps located between cycles $-16,000$ and $-6,000$ are not real. This cycle interval has fewer observations, the visual minima have a large amount of scatter, and a large data gap exists for the years 1938-1945. More precise CCD minima timings became available beginning about the year 1999 (cycle count 7,000). Between cycles 7,000 and 15,000 a few sudden period changes are well documented by these precision timings, leaving little doubt that period jumps are occurring in this system.

3.2. Temperature, spectral type

Popper (1996) obtained three high-resolution spectra of XZ Per and found a spectral type of F2-5. The spectral lines of only the primary star were seen. For light curve modeling an effective temperature for the primary was selected midway between the spectral types F2 and F5 with an error estimate taken from that range. Using Table 5 of Pecaut and Mamajek (2013) gives an effective temperature for the primary star of $\mathrm{T}_{\text {eff }}=6680 \pm 170 \mathrm{~K}$ and a color index of $B-V=0.40 \pm 0.05$. To measure the changing color of XZ Per over its entire phase range, the Johnson V and B passband observations were binned with a phase width of 0.005 . Both phase and magnitude were averaged in each bin interval. Figure 6 shows the binned V magnitude light curve and in the bottom panel the $(B-V)$ color
index. The significant reddening of the light at primary eclipse indicates a large temperature difference between the primary and secondary stars. The observed color over the entire phase range may also be reddened due to interstellar dust. XZ Per is located 3° south of the galactic equator, therefore a significant amount of interstellar extinction is possible. Extinction will be discussed further in section 4.

3.3. Synthetic light curve modeling

Photometric models of XZ Per were obtained for each of the two sets of data, DS1 (g^{\prime}, r^{\prime}, and i^{\prime} observations) and DS2 (B and V observations). The observations were binned in both phase and magnitude with a phase interval of 0.005 . The average number of observations per bin was eight for DS1 and six for DS2. The binned magnitudes were converted to relative flux for modeling. Preliminary fits to each light curve were made using the binary maker 3.0 program (bm3; Bradstreet and Steelman 2002). The initial mass ratio for this modeling was taken from a catalogue of eclipsing binary parameters (Brancewicz and Dworak 1980); standard convective parameters were used for both stars and limb darkening coefficients were from Van Hamme's (1993) tabular values. The resulting BM3 synthetic light curves for each color fit the observations well and were consistent for each data set. The stellar parameters from the light curve fits were independently averaged for each model, DS1 and DS2. These values were used as the initial input parameters for computation of simultaneous three-color (DS1) and twocolor (DS2) light curve solutions with the 2013 version of the Wilson-Devinney program (wD; Wilson and Devinney 1971; Van Hamme and Wilson 1998). There are two mass ratios published for this system, 0.69 (Brancewicz and Dworak 1980) and 0.50 (Malkov et al. 2006). A derived mass ratio from a wD solution would only have reasonable accuracy if the eclipses are total (Wilson 1978; Terrell and Wilson 2005). The eclipses of XZ Per are not total, and combined with the inconsistent published mass ratios, a q-search would be required. For fixed inputs, the effective temperature of the primary was set to T_{1} $=6680 \mathrm{~K}$ (see section 3.2) and standard convective values for gravity darkening and albedo, $\mathrm{g}_{1}=\mathrm{g}_{2}=0.32$ (Lucy 1968) and $\mathrm{A}_{1}=\mathrm{A}_{2}=0.5$ (Ruciński 1969), respectively. The logarithmic limb darkening coefficients were interpolated from tabulated values using the method of Van Hamme (1993). The Kurucz (1993) stellar atmosphere model was applied and detailed reflection was utilized in modeling. The adjustable parameters include the inclination (i), mass ratio ($q=M_{2} / M_{1}$), potential (Ω), temperature of the secondary $\operatorname{star}\left(\mathrm{T}_{2}\right)$, the normalized flux for each wavelength (L), and third light (ℓ).

Mode 2 (detached configuration) was used initially but every solution attempt converged quickly to a semi-detached configuration. This indicates the secondary star fills its Roche lobe. Mode 5 (semi-detached configuration) was therefore used on subsequent iterations and the final solutions. Using the DS1 light curves, a series of solutions were made using fixed mass ratios from 0.30 to 1.00 with a step of 0.05 . This q-search had minimum residual value at about $\mathrm{q}=0.64$ (see Figure 7) and was used as the initial mass ratio for the final solution attempts for each data set. With the mass ratio as a free parameter, the resulting best-fit final solution parameters are shown in columns

Table 3. Available times of minima and $\mathrm{O}-\mathrm{C}$ residuals from Equation 1.

$\begin{gathered} \text { Epoch } \\ \text { HJD 2400000+ } \end{gathered}$	Type	Cycle	$O-C$	Reference	Epoch HJD 2400000+	Type	Cycle	$O-C$	Reference
25150.438	vis	-15940.0	0.00847	BAV Lichten. DB	35539.315	P	-6919.0	-0.00592	BAV Lichten. DB
25151.587	vis	-15939.0	0.00584	BAV Lichten. DB	35745.455	vis	-6740.0	-0.00843	BAV Lichten. DB
25157.352	vis	-15934.0	0.01267	BAV Lichten. DB	35782.310	vis	-6708.0	-0.00572	BAV Lichten. DB
25187.292	vis	-15908.0	0.01018	BAV Lichten. DB	35904.382	vis	-6602.0	-0.00694	BAV Lichten. DB
25188.444	vis	-15907.0	0.01055	BAV Lichten. DB	36194.589	P	-6350.0	-0.01174	Whitney 1959
25216.081	vis	-15883.0	0.00833	BAV Lichten. DB	36452.552	vis	-6126.0	-0.01458	BAV Lichten. DB
25234.502	vis	-15867.0	0.00318	BAV Lichten. DB	36452.553	vis	-6126.0	-0.01338	BAV Lichten. DB
25249.475	vis	-15854.0	0.00494	BAV Lichten. DB	36452.558	vis	-6126.0	-0.00928	BAV Lichten. DB
25301.302	vis	-15809.0	0.00840	BAV Lichten. DB	37020.311	vis	-5633.0	-0.01140	BAV Lichten. DB
25324.333	vis	-15789.0	0.00672	BAV Lichten. DB	37196.511	vis	-5480.0	-0.01142	BAV Lichten. DB
25506.293	vis	-15631.0	0.00853	BAV Lichten. DB	37196.514	vis	-5480.0	-0.00842	BAV Lichten. DB
25514.352	vis	-15624.0	0.00609	BAV Lichten. DB	37316.284	vis	-5376.0	-0.00837	BAV Lichten. DB
25520.114	vis	-15619.0	0.00992	BAV Lichten. DB	37545.459	vis	-5177.0	-0.00856	BAV Lichten. DB
25529.324	vis	-15611.0	0.00685	BAV Lichten. DB	37932.412	vis	-4841.0	-0.00463	BAV Lichten. DB
25530.484	vis	-15610.0	0.01521	BAV Lichten. DB	37932.416	vis	-4841.0	-0.00063	BAV Lichten. DB
25886.335	vis	-15301.0	0.01127	BAV Lichten. DB	38684.430	P	-4188.0	-0.00371	Todoran 1967
25893.241	vis	-15295.0	0.00747	BAV Lichten. DB	38714.374	P	-4162.0	-0.00219	Todoran 1967
25917.429	vis	-15274.0	0.01115	BAV Lichten. DB	39033.379	vis	-3885.0	0.00016	BAV Lichten. DB
25945.067	vis	-15250.0	0.00993	BAV Lichten. DB	39390.390	P	-3575.0	0.00458	Todoran 1967
26000.349	vis	-15202.0	0.01349	BAV Lichten. DB	39445.662	vis	-3527.0	-0.00186	Robinson 1967
26030.287	vis	-15176.0	0.00901	BAV Lichten. DB	39772.727	vis	-3243.0	-0.00095	Baldwin 1974
26208.785	vis	-15021.0	0.00372	BAV Lichten. DB	39886.743	vis	-3144.0	0.00327	Baldwin 1974
26257.152	vis	-14979.0	0.00208	BAV Lichten. DB	39893.653	vis	-3138.0	0.00347	Baldwin 1974
26305.519	vis	-14937.0	0.00045	BAV Lichten. DB	39916.682	vis	-3118.0	-0.00021	Baldwin 1974
26957.341	vis	-14371.0	-0.00246	BAV Lichten. DB	40151.618	vis	-2914.0	0.00243	BAV Lichten. DB
26979.216	vis	-14352.0	-0.00851	BAV Lichten. DB	40151.618	P	-2914.0	0.00243	Baldwin 1974
26980.375	vis	-14351.0	-0.00114	BAV Lichten. DB	40188.466	vis	-2882.0	-0.00187	Flin 1969
26980.377	vis	-14351.0	0.00086	BAV Lichten. DB	40203.440	vis	-2869.0	0.00089	Flin 1969
26981.522	vis	-14350.0	-0.00578	BAV Lichten. DB	40232.234	vis	-2844.0	0.00404	Flin 1969
27002.260	vis	-14332.0	0.00281	BAV Lichten. DB	40471.766	vis	-2636.0	-0.00386	Baldwin 1974
27337.375	vis	-14041.0	-0.00772	BAV Lichten. DB	40477.527	vis	-2631.0	-0.00103	BAV Lichten. DB
27343.136	vis	-14036.0	-0.00489	BAV Lichten. DB	40477.528	vis	-2631.0	-0.00003	BAV Lichten. DB
27344.285	vis	-14035.0	-0.00753	BAV Lichten. DB	40477.529	vis	-2631.0	0.00097	BAV Lichten. DB
27345.440	vis	-14034.0	-0.00416	BAV Lichten. DB	40499.404	vis	-2612.0	-0.00508	BAV Lichten. DB
27346.594	vis	-14033.0	-0.00179	BAV Lichten. DB	40499.408	vis	-2612.0	-0.00108	BAV Lichten. DB
28151.581	vis	-13334.0	-0.00704	BAV Lichten. DB	40500.568	vis	-2611.0	0.00729	BAV Lichten. DB
28151.581	vis	-13334.0	-0.00704	BAV Lichten. DB	40539.713	vis	-2577.0	-0.00327	Baldwin 1974
28635.274	vis	-12914.0	-0.00037	BAV Lichten. DB	40554.681	vis	-2564.0	-0.00652	Baldwin 1974
28783.833	vis	-12785.0	-0.00218	BAV Lichten. DB	40796.524	vis	-2354.0	-0.00668	BAV Lichten. DB
28932.392	vis	-12656.0	-0.00398	BAV Lichten. DB	40856.411	vis	-2302.0	-0.00466	Baldwin 1975
31712.435	vis	-10242.0	-0.00574	BAV Lichten. DB	40969.275	vis	-2204.0	-0.00080	Baldwin 1976a
32623.372	vis	-9451.0	-0.01133	BAV Lichten. DB	41221.483	vis	-1985.0	-0.00067	BAV Lichten. DB
32770.782	vis	-9323.0	-0.01050	BAV Lichten. DB	41357.383	vis	-1867.0	0.00650	Klimek 1972
32820.300	vis	-9280.0	-0.01277	BAV Lichten. DB	41395.380	vis	-1834.0	-0.00042	Klimek 1973
32868.673	vis	-9238.0	-0.00840	BAV Lichten. DB	41395.382	vis	-1834.0	0.00158	BBSAG No. 2
33155.432	vis	-8989.0	-0.00630	BAV Lichten. DB	41395.383	vis	-1834.0	0.00258	Baldwin 1976a
33183.071	vis	-8965.0	-0.00651	BAV Lichten. DB	41410.353	vis	-1821.0	0.00133	BBSAG No. 3
33185.375	vis	-8963.0	-0.00578	BAV Lichten. DB	41570.422	vis	-1682.0	-0.00681	BBSAG No. 5
33207.254	vis	-8944.0	-0.00783	BAV Lichten. DB	41585.404	vis	-1669.0	0.00395	BBSAG No. 5
33505.534	vis	-8685.0	-0.00107	BAV Lichten. DB	41593.462	vis	-1662.0	0.00051	BBSAG No. 6
33581.539	vis	-8619.0	-0.00392	BAV Lichten. DB	41623.400	vis	-1636.0	-0.00398	BBSAG No. 6
33657.544	vis	-8553.0	-0.00677	BAV Lichten. DB	41623.402	vis	-1636.0	-0.00198	Baldwin 1976a
33717.435	P	-8501.0	-0.00075	BAV Lichten. DB	41759.298	vis	-1518.0	0.00119	BBSAG No. 8
33900.547	vis	-8342.0	0.00143	BAV Lichten. DB	41905.564	vis	-1391.0	0.00966	BBSAG No. 11
33900.547	vis	-8342.0	0.00143	BAV Lichten. DB	41913.614	vis	-1384.0	-0.00178	BBSAG No. 11
34226.450	vis	-8059.0	-0.00803	BAV Lichten. DB	41927.438	vis	-1372.0	0.00261	BBSAG No. 11
34271.368	vis	-8020.0	-0.00376	BAV Lichten. DB	41982.716	vis	-1324.0	0.00217	Baldwin 1976b
34284.334*	vis	-8008.5	-0.28155	BAV Lichten. DB	41989.619	vis	-1318.0	-0.00463	Baldwin 1976b
34453.332	vis	-7862.0	0.00205	BAV Lichten. DB	42071.393	vis	-1247.0	0.00335	BBSAG No. 13
34529.339	vis	-7796.0	0.00120	BAV Lichten. DB	42109.396	vis	-1214.0	0.00242	BBSAG No. 14
34606.498	vis	-7729.0	0.00071	BAV Lichten. DB	42132.422	vis	-1194.0	-0.00426	BBSAG No. 14
35008.415	vis	-7380.0	-0.00259	BAV Lichten. DB	42139.340	vis	-1188.0	0.00393	BBSAG No. 15
35008.415	vis	-7380.0	-0.00259	BAV Lichten. DB	42262.565	vis	-1081.0	0.00408	BBSAG No. 17
35062.538	P	-7333.0	-0.00640	Whitney 1959	42337.417	vis	-1016.0	-0.00013	BBSAG No. 18
35190.373	P	-7222.0	-0.00279	BAV Lichten. DB	42367.366	vis	-990.0	0.00638	BAV Lichten. DB
35450.638	P	-6996.0	-0.00710	Whitney 1959	42367.368	vis	-990.0	0.00838	BAV Lichten. DB
35510.532	P	-6944.0	0.00193	Whitney 1959	42367.368	vis	-990.0	0.00838	BAV Lichten. DB

Table 3. Available times of minima and O-C residuals from Equation 1, cont.

Epoch HJD 2400000+	Type	Cycle	$O-C$	Reference	Epoch HJD 2400000+	Type	Cycle	$O-C$	Reference
42367.369	vis	-990.0	0.00938	BAV Lichten. DB	44638.378	vis	982.0	-0.00411	BAV Lichten. DB
42391.542	vis	-969.0	-0.00194	Baldwin 1977	44646.449	vis	989.0	0.00546	BBSAG No. 53
42405.365	vis	-957.0	0.00145	BBSAG No. 19	44647.594	vis	990.0	-0.00118	Baldwin and Samolyk 1993
42428.392	vis	-937.0	-0.00423	BBSAG No. 20	44683.291	vis	1021.0	-0.00484	BBSAG No. 53
42429.554	vis	-936.0	0.00614	BAV Lichten. DB	44881.358*	vis	1193.0	-0.01891	BAV Lichten. DB
42435.302	vis	-931.0	-0.00403	BBSAG No. 20	44883.685	vis	1195.0	0.00483	BBSAG No. 57
42435.308	vis	-931.0	0.00197	BBSAG No. 20	44884.839*	vis	1196.0	0.00719	Baldwin and Samolyk 1993
42450.274	vis	-918.0	-0.00328	BBSAG No. 21	44898.648	vis	1208.0	-0.00342	Baldwin and Samolyk 1993
42450.277	vis	-918.0	-0.00028	BBSAG No. 21	44911.312	vis	1219.0	-0.00739	BBSAG No. 57
42450.280	vis	-918.0	0.00272	BBSAG No. 21	44934.348	vis	1239.0	-0.00407	BBSAG No. 57
42458.342	vis	-911.0	0.00328	BBSAG No. 21	45201.528	vis	1471.0	-0.00319	BAV Lichten. DB
42458.345	vis	-911.0	0.00628	BBSAG No. 21	45201.529	vis	1471.0	-0.00219	BAV Lichten. DB
42688.663	vis	-711.0	-0.00254	BAV Lichten. DB	45201.532	vis	1471.0	0.00081	BAV Lichten. DB
42689.816	vis	-710.0	-0.00117	BAV Lichten. DB	45201.532	vis	1471.0	0.00081	BAV Lichten. DB
42754.309	vis	-654.0	0.00031	BBSAG No. 25	45201.533	vis	1471.0	0.00181	BAV Lichten. DB
42777.337	vis	-634.0	-0.00437	BBSAG No. 25	45201.533	vis	1471.0	0.00181	BAV Lichten. DB
42785.404	vis	-627.0	0.00119	BBSAG No. 26	45201.534	vis	1471.0	0.00281	BAV Lichten. DB
42809.587	vis	-606.0	-0.00012	Baldwin and Samolyk 1993	45201.534	vis	1471.0	0.00281	BAV Lichten. DB
42830.317	vis	-588.0	0.00046	BBSAG No. 26	45201.534	vis	1471.0	0.00281	BAV Lichten. DB
42832.615	vis	-586.0	-0.00481	Baldwin and Samolyk 1993	45201.537	vis	1471.0	0.00581	BAV Lichten. DB
42832.620	vis	-586.0	0.00019	Baldwin and Samolyk 1993	45201.537	vis	1471.0	0.00581	BAV Lichten. DB
42838.375	vis	-581.0	-0.00298	BBSAG No. 26	45201.539	vis	1471.0	0.00781	BAV Lichten. DB
42838.377	vis	-581.0	-0.00098	BBSAG No. 26	45231.481	vis	1497.0	0.00732	BBSAG No. 62
42985.786	vis	-453.0	-0.00114	Baldwin and Samolyk 1993	45247.602	vis	1511.0	0.00544	BBSAG No. 63
43014.580	vis	-428.0	0.00200	BBSAG No. 29	45247.612	vis	1511.0	0.01544	BBSAG No. 63
43023.787	vis	-420.0	-0.00407	Baldwin and Samolyk 1993	45253.369	vis	1516.0	0.01427	BBSAG No. 63
43023.792	vis	-420.0	0.00093	BAV Lichten. DB	45313.246	vis	1568.0	0.00630	BBSAG No. 64
43037.604	vis	-408.0	-0.00668	BBSAG No. 30	45314.390	vis	1569.0	-0.00133	BBSAG No. 64
43098.643	vis	-355.0	-0.00429	Baldwin and Samolyk 1993	45352.394	vis	1602.0	-0.00126	BBSAG No. 64
43128.588	vis	-329.0	-0.00177	Baldwin and Samolyk 1993	45359.306	vis	1608.0	0.00094	BBSAG No. 64
43134.360	vis	-324.0	0.01205	BAV Lichten. DB	45368.512	vis	1616.0	-0.00614	BBSAG No. 65
43136.654	vis	-322.0	0.00279	Baldwin and Samolyk 1993	45390.396	vis	1635.0	-0.00319	BBSAG No. 65
43188.472	vis	-277.0	-0.00275	BBSAG No. 32	45397.309	vis	1641.0	0.00001	BBSAG No. 65
43188.480	vis	-277.0	0.00525	BBSAG No. 32	45405.376	vis	1648.0	0.00557	BBSAG No. 66
43393.465	vis	-99.0	-0.00062	BBSAG No. 35	45435.319	vis	1674.0	0.00608	BBSAG No. 66
43395.767	vis	-97.0	-0.00189	Baldwin and Samolyk 1993	45558.535	vis	1781.0	-0.00277	BAV Lichten. DB
43409.587	vis	-85.0	-0.00150	BBSAG No. 35	45566.600	vis	1788.0	0.00079	BBSAG No. 68
43493.665	vis	-12.0	0.00721	Baldwin and Samolyk 1993	45611.504	vis	1827.0	-0.00894	BBSAG No. 69
43506.328	vis	-1.0	0.00223	BBSAG No. 36	45640.311	vis	1852.0	0.00721	BBSAG No. 69
43514.391	vis	6.0	0.00380	BBSAG No. 36	45649.510	vis	1860.0	-0.00686	BBSAG No. 69
43538.579	vis	27.0	0.00748	Baldwin and Samolyk 1993	45671.398	vis	1879.0	0.00009	BAV Lichten. DB
43544.328	vis	32.0	-0.00169	BBSAG No. 36	45671.402	vis	1879.0	0.00409	BAV Lichten. DB
43544.331	vis	32.0	0.00131	BBSAG No. 36	45671.405	vis	1879.0	0.00709	BAV Lichten. DB
43575.421	vis	59.0	-0.00281	BBSAG No. 37	45671.411	vis	1879.0	0.01309	BAV Lichten. DB
43788.475	vis	244.0	-0.00113	BBSAG No. 39	45672.550	vis	1880.0	0.00005	BAV Lichten. DB
43803.446	vis	257.0	-0.00137	BBSAG No. 39	45694.427	vis	1899.0	-0.00359	BBSAG No. 70
43865.645	vis	311.0	0.00939	Baldwin and Samolyk 1993	45701.340	vis	1905.0	-0.00040	BBSAG No. 70
43870.241	vis	315.0	-0.00115	BBSAG No. 41	45915.546	vis	2091.0	0.00166	BBSAG No. 73
43878.302	vis	322.0	-0.00159	BBSAG No. 41	45993.864	vis	2159.0	0.00853	Baldwin and Samolyk 1993
43932.426	vis	369.0	-0.00439	BBSAG No. 42	45998.461	vis	2163.0	-0.00100	BBSAG No. 74
44132.808	vis	543.0	-0.00673	Baldwin and Samolyk 1993	46000.769	vis	2165.0	0.00373	Baldwin and Samolyk 1993
44132.819	vis	543.0	0.00427	Baldwin and Samolyk 1993	46005.375	vis	2169.0	0.00319	BBSAG No. 74
44139.717	vis	549.0	-0.00753	Baldwin and Samolyk 1993	46006.520	vis	2170.0	-0.00344	BBSAG No. 74
44189.246	vis	592.0	0.00120	BBSAG No. 45	46007.674	vis	2171.0	-0.00107	Baldwin and Samolyk 1993
44192.692	vis	595.0	-0.00770	Baldwin and Samolyk 1993	46029.553	vis	2190.0	-0.00312	Baldwin and Samolyk 1993
44214.578	vis	614.0	-0.00275	Baldwin and Samolyk 1993	46050.284	vis	2208.0	-0.00154	BBSAG No. 75
44222.645	vis	621.0	0.00281	Baldwin and Samolyk 1993	46052.592	vis	2210.0	0.00319	Baldwin and Samolyk 1993
44266.401	vis	659.0	-0.00329	BBSAG No. 46	46060.653	vis	2217.0	0.00276	Baldwin and Samolyk 1993
44267.538*	vis	660.0	-0.01792	BAV Lichten. DB	46060.659	vis	2217.0	0.00876	BAV Lichten. DB
44311.316	vis	698.0	-0.00202	BBSAG No. 47	46119.392	vis	2268.0	0.00842	BBSAG No. 76
44449.509*	vis	818.0	-0.00511	BBSAG No. 49	46172.365	vis	2314.0	0.00625	BBSAG No. 76
44472.551	vis	838.0	0.00421	BBSAG No. 49	46318.623	vis	2441.0	0.00671	BBSAG No. 78
44474.844	vis	840.0	-0.00606	Baldwin and Samolyk 1993	46357.773	vis	2475.0	0.00115	Baldwin and Samolyk 1993
44539.342	vis	896.0	0.00043	BBSAG No. 51	46377.348	Vis	2492.0	-0.00163	BBSAG No. 79
44549.703	vis	905.0	-0.00328	Baldwin and Samolyk 1993	46416.509	vis	2526.0	0.00381	BBSAG No. 79
44555.467	vis	910.0	0.00255	BBSAG No. 51	46439.542	vis	2546.0	0.00413	Baldwin and Samolyk 1993
44608.443	vis	956.0	0.00338	BBSAG No. 52	46447.606	vis	2553.0	0.00669	Baldwin and Samolyk 1993

table continued on following pages

Table 3. Available times of minima and $\mathrm{O}-\mathrm{C}$ residuals from Equation 1, cont.

$\begin{gathered} \text { Epoch } \\ \text { HJD 2400000+ } \end{gathered}$	Type	Cycle	$O-C$	Reference	$\begin{gathered} \text { Epoch } \\ \text { HJD 2400000+ } \end{gathered}$	Type	Cycle	$O-C$	Reference
46478.698	vis	2580.0	0.00457	Baldwin and Samolyk 1993	49220.703	vis	4961.0	-0.03127	Baldwin and Samolyk 1997
46629.556	vis	2711.0	-0.00150	BBSAG No. 80	49243.737	vis	4981.0	-0.02995	Baldwin and Samolyk 1997
46659.502	vis	2737.0	0.00201	BBSAG No. 81	49250.647	vis	4987.0	-0.02976	Baldwin and Samolyk 1997
46681.380	vis	2756.0	-0.00103	BBSAG No. 81	49266.771	vis	5001.0	-0.02863	Baldwin and Samolyk 1997
46713.625	vis	2784.0	-0.00179	Baldwin and Samolyk 1993	49326.650	vis	5053.0	-0.03461	Baldwin and Samolyk 1997
46736.662	vis	2804.0	0.00253	Baldwin and Samolyk 1993	49327.802	vis	5054.0	-0.03424	Baldwin and Samolyk 1997
46742.422	vis	2809.0	0.00436	BBSAG No. 82	49331.271	vis	5057.0	-0.02014	BBSAG No. 105
46744.721	vis	2811.0	0.00009	Baldwin and Samolyk 1993	49333.560	vis	5059.0	-0.03441	Baldwin and Samolyk 1997
46764.301	vis	2828.0	0.00231	BBSAG No. 82	49384.237	vis	5103.0	-0.02931	BBSAG No. 106
46765.454	vis	2829.0	0.00367	BBSAG No. 82	49455.638	vis	5165.0	-0.02963	Baldwin and Samolyk 1997
46804.606	vis	2863.0	0.00011	Baldwin and Samolyk 1993	49561.586	vis	5257.0	-0.03197	BBSAG No. 107
46805.756	vis	2864.0	-0.00152	Baldwin and Samolyk 1993	49637.594	vis	5323.0	-0.03182	Baldwin and Samolyk 1997
46817.280	vis	2874.0	0.00614	BBSAG No. 83	49637.596	vis	5323.0	-0.02982	Baldwin and Samolyk 1997
46820.735	vis	2877.0	0.00624	Baldwin and Samolyk 1993	49650.258	vis	5334.0	-0.03580	BBSAG No. 108
47001.557*	vis	3034.0	0.02168	BAV Lichten. DB	49713.599	vis	5389.0	-0.03467	Baldwin and Samolyk 1997
47039.531	vis	3067.0	-0.00825	BBSAG No. 85	49713.602	vis	5389.0	-0.03167	Baldwin and Samolyk 1997
47063.711*	vis	3088.0	-0.01256	Baldwin and Samolyk 1993	49715.913	vis	5391.0	-0.02394	Saijo 1997
47069.481	vis	3093.0	-0.00073	BBSAG No. 87	49774.636	vis	5442.0	-0.03428	Baldwin and Samolyk 1997
47084.449	vis	3106.0	-0.00398	BBSAG No. 86	49787.307	vis	5453.0	-0.03126	BBSAG No. 108
47086.749	vis	3108.0	-0.00724	Baldwin and Samolyk 1993	49789.608	vis	5455.0	-0.03352	Baldwin and Samolyk 1997
47109.776	vis	3128.0	-0.01293	Baldwin and Samolyk 1993	49810.337	vis	5473.0	-0.03394	BBSAG No. 109
47185.790	vis	3194.0	-0.00678	Baldwin and Samolyk 1993	49810.339	vis	5473.0	-0.03194	BBSAG No. 109
47200.763	vis	3207.0	-0.00502	Baldwin and Samolyk 1993	49948.534	vis	5593.0	-0.03303	BBSAG No. 110
47205.374	vis	3211.0	-0.00056	BBSAG No. 87	49965.807	vis	5608.0	-0.03454	Baldwin and Samolyk 1997
47235.301	vis	3237.0	-0.01605	BBSAG No. 88	50041.817	vis	5674.0	-0.03240	Baldwin and Samolyk 1997
47390.769	vis	3372.0	-0.01865	Baldwin and Samolyk 1993	50047.570	vis	5679.0	-0.03757	Baldwin and Samolyk 1997
47411.513	vis	3390.0	-0.00407	BBSAG No. 89	50047.573	vis	5679.0	-0.03457	Baldwin and Samolyk 1997
47411.513	vis	3390.0	-0.00407	Baldwin and Samolyk 1993	50068.305	vis	5697.0	-0.03198	BBSAG No. 111
47420.714	vis	3398.0	-0.01614	Baldwin and Samolyk 1993	50099.402	vis	5724.0	-0.02910	BBSAG No. 111
47435.694	vis	3411.0	-0.00738	BAV Lichten. DB	50154.674	vis	5772.0	-0.03554	Baldwin and Samolyk 1997
47456.412	vis	3429.0	-0.01880	BBSAG No. 90	50167.335	vis	5783.0	-0.04252	BBSAG No. 111
47480.602	vis	3450.0	-0.01311	Baldwin and Samolyk 1993	50313.597	vis	5910.0	-0.03805	BBSAG No. 113
47524.367	vis	3488.0	-0.01021	BBSAG No. 90	50337.776	vis	5931.0	-0.04337	Baldwin and Samolyk 1997
47554.306	vis	3514.0	-0.01370	BBSAG No. 91	50380.389	vis	5968.0	-0.04083	BBSAG No. 113
47554.312	vis	3514.0	-0.00770	BBSAG No. 91	50397.671	vis	5983.0	-0.03334	Baldwin and Samolyk 1997
47556.608	vis	3516.0	-0.01497	Baldwin and Samolyk 1993	50420.693	vis	6003.0	-0.04402	Baldwin and Samolyk 1997
47562.368	vis	3521.0	-0.01314	BBSAG No. 91	50427.605	vis	6009.0	-0.04183	Baldwin and Samolyk 1997
47564.668	vis	3523.0	-0.01640	Baldwin and Samolyk 1993	50433.357	vis	6014.0	-0.04800	BBSAG No. 114
47822.640	vis	3747.0	-0.01045	Baldwin and Samolyk 1993	50486.342	vis	6060.0	-0.03817	BBSAG No. 114
47823.786	vis	3748.0	-0.01608	Baldwin and Samolyk 1993	50488.642	vis	6062.0	-0.04144	Baldwin and Samolyk 1997
47837.607	vis	3760.0	-0.01469	Baldwin and Samolyk 1993	50495.557	vis	6068.0	-0.03624	Baldwin and Samolyk 1997
47850.281	vis	3771.0	-0.00867	BBSAG No. 94	50509.371	vis	6080.0	-0.04185	BBSAG No. 114
47858.341	vis	3778.0	-0.01011	BBSAG No. 93	50509.378	vis	6080.0	-0.03485	BBSAG No. 114
47911.312	vis	3824.0	-0.01427	BBSAG No. 94	50516.282	vis	6086.0	-0.04065	BBSAG No. 114
47934.345	vis	3844.0	-0.01396	BBSAG No. 94	50517.430	vis	6087.0	-0.04429	BBSAG No. 114
47943.557	vis	3852.0	-0.01503	Baldwin and Samolyk 1993	50518.583	vis	6088.0	-0.04292	Baldwin and Samolyk 1997
48209.580	vis	4083.0	-0.01951	Baldwin and Samolyk 1993	50541.611	vis	6108.0	-0.04760	Baldwin and Samolyk 1997
48222.254	vis	4094.0	-0.01349	BBSAG No. 97	50692.476	vis	6239.0	-0.04667	BBSAG No. 115
48232.616	vis	4103.0	-0.01619	Baldwin and Samolyk 1993	50752.363	vis	6291.0	-0.04465	BBSAG No. 116
48260.254	vis	4127.0	-0.01741	BBSAG No. 97	50761.571	vis	6299.0	-0.04972	Baldwin and Samolyk 2002
48260.258	vis	4127.0	-0.01341	BBSAG No. 97	50762.724	vis	6300.0	-0.04836	Baldwin and Samolyk 2002
48329.354	vis	4187.0	-0.01546	BBSAG No. 97	50769.633	vis	6306.0	-0.04916	Baldwin and Samolyk 2002
48490.578	vis	4327.0	-0.02024	BBSAG No. 98	50774.244	vis	6310.0	-0.04470	BBSAG No. 116
48506.705	vis	4341.0	-0.01611	Baldwin and Samolyk 1993	50782.305	vis	6317.0	-0.04514	BBSAG No. 116
48512.461	vis	4346.0	-0.01829	BAV Lichten. DB	50845.644	vis	6372.0	-0.04601	Baldwin and Samolyk 2002
48512.461	vis	4346.0	-0.01789	Baldwin and Samolyk 1993	51057.544	vis	6556.0	-0.04669	BBSAG No. 118
48534.340	vis	4365.0	-0.02033	BBSAG No. 99	51133.547	vis	6622.0	-0.05154	Baldwin and Samolyk 2002
48536.641	vis	4367.0	-0.02260	Baldwin and Samolyk 1993	51156.585	vis	6642.0	-0.04623	Baldwin and Samolyk 2002
48564.280	vis	4391.0	-0.02282	BBSAG No. 99	51177.313	vis	6660.0	-0.04764	BBSAG No. 119
48625.322	vis	4444.0	-0.01743	BBSAG No. 100	51383.4540	CCD	6839.0	-0.04915	BAV Lichten. DB
48686.346	vis	4497.0	-0.03004	BBSAG No. 100	51438.731	vis	6887.0	-0.05058	Baldwin and Samolyk 2002
48686.362	vis	4497.0	-0.01404	BBSAG No. 101	51469.8278	PE	6914.0	-0.04791	Nelson 2000
48893.645	vis	4677.0	-0.02518	Baldwin and Samolyk 1997	51490.5576	CCD	6932.0	-0.04752	Baldwin and Samolyk 2002
48923.588	vis	4703.0	-0.02467	Baldwin and Samolyk 1997	51513.589	vis	6952.0	-0.04880	Baldwin and Samolyk 2002
49005.351	vis	4774.0	-0.02769	BBSAG No. 103	51544.687	vis	6979.0	-0.04492	Baldwin and Samolyk 2002
49066.395	vis	4827.0	-0.02060	BAV Lichten. DB	51551.598	vis	6985.0	-0.04373	Baldwin and Samolyk 2002
49066.402	vis	4827.0	-0.01360	BAV Lichten. DB	51557.356	vis	6990.0	-0.04390	BBSAG No. 122

Table 3. Available times of minima and $\mathrm{O}-\mathrm{C}$ residuals from Equation 1, cont.

$\begin{gathered} \text { Epoch } \\ \text { HJD } 2400000+ \end{gathered}$	Type	Cycle	$O-C$	Reference	Epoch HJD 2400000+	Type	Cycle	$O-C$	Reference
51580.391	vis	7010.0	-0.04158	BBSAG No. 122	54116.2733	CCD	9212.0	-0.05761	Doğru et al. 2009
51581.542	vis	7011.0	-0.04222	Baldwin and Samolyk 2002	54172.7032	CCD	9261.0	-0.05779	BAV Lichten. DB
51582.691	vis	7012.0	-0.04485	Baldwin and Samolyk 2002	54476.7360	CCD	9525.0	-0.05639	Samolyk 2008
51625.296	vis	7049.0	-0.05031	BBSAG No. 122	54521.6495	CCD	9564.0	-0.05662	Samolyk 2008
51809.563	vis	7209.0	-0.04477	BBSAG No. 123	54830.2903	CCD	9832.0	-0.05377	Hübscher et al. 2009
51870.594	vis	7262.0	-0.05038	Baldwin and Samolyk 2002	54830.2909	CCD	9832.0	-0.05317	Hübscher et al. 2009
51878.658	vis	7269.0	-0.04782	Baldwin and Samolyk 2002	54848.7164	CCD	9848.0	-0.05381	Diethelm 2009
51893.6265	CCD	7282.0	-0.05056	Baldwin and Samolyk 2002	54863.6886	CCD	9861.0	-0.05286	Samolyk 2009
51913.219*	vis	7299.0	-0.03584	BBSAG No. 124	54863.6887	CCD	9861.0	-0.05276	Samolyk 2009
51946.6017	CCD	7328.0	-0.05053	Baldwin and Samolyk 2002	54868.2952	CCD	9865.0	-0.05279	Doğru et al. 2009
51952.3600*	PE	7333.0	-0.05040	BBSAG No. 124	55105.5329	CCD	10071.0	-0.05172	Erkan et al. 2010
51961.5738	CCD	7341.0	-0.04967	Baldwin and Samolyk 2002	55122.8078	CCD	10086.0	-0.05133	Samolyk 2010
52205.724	vis	7553.0	-0.04591	Baldwin and Samolyk 2002	55127.4097	CCD	10090.0	-0.05597	Erkan et al. 2010
52212.634	vis	7559.0	-0.04571	BBSAG No. 126	55130.8691	CCD	10093.0	-0.05147	Samolyk 2010
52227.601	vis	7572.0	-0.04996	Baldwin and Samolyk 2002	55205.7253	CCD	10158.0	-0.05149	Diethelm 2010
52250.636	vis	7592.0	-0.04764	Baldwin and Samolyk 2002	55500.5411	CCD	10414.0	-0.05403	Doğru et al. 2011
52265.589*	vis	7605.0	-0.06588	BAV Lichten. DB	55501.6927	CCD	10415.0	-0.05406	Samolyk 2011
52279.423	vis	7617.0	-0.05149	BBSAG No. 127	55502.8443	CCD	10416.0	-0.05409	Diethelm 2011
52530.479*	vis	7835.0	-0.05173	Diethelm 2003	55571.9411	CCD	10476.0	-0.05534	Nagai 2012
52555.8134	PE	7857.0	-0.05328	Nelson 2003	55579.4331*	CCD	10482.5	-0.04896	Hübscher 2011
52585.751	vis	7883.0	-0.05817	BAV Lichten. DB	55837.9646	CCD	10707.0	-0.05932	Samolyk 2012
52637.572	vis	7928.0	-0.06070	BAV Lichten. DB	55867.9069	CCD	10733.0	-0.05951	Diethelm 2012
52637.575	vis	7928.0	-0.05770	BAV Lichten. DB	55970.4010	CCD	10822.0	-0.06085	Hoňková et al. 2013
52652.550	vis	7941.0	-0.05415	BAV Lichten. DB	55970.4011	CCD	10822.0	-0.06075	Hoňková et al. 2013
52658.3078	PE	7946.0	-0.05432	Diethelm 2003	55970.4011	CCD	10822.0	-0.06075	Hoňková et al. 2013
52902.454	vis	8158.0	-0.05455	Diethelm 2004	56015.3147	CCD	10861.0	-0.06088	Hoňková et al. 2013
52966.940	vis	8214.0	-0.06006	BAV Lichten. DB	56015.3151	CCD	10861.0	-0.06053	Hoňková et al. 2013
53290.5507	CCD	8495.0	-0.05855	Zejda et al. 2006	56186.9049	CCD	11010.0	-0.06416	Samolyk 2013a
53326.2516	CCD	8526.0	-0.05831	Nagai 2004a	56230.6663	CCD	11048.0	-0.06486	Samolyk 2013a
53342.375	vis	8540.0	-0.05778	Locher 2005	56238.7280	CCD	11055.0	-0.06460	Samolyk 2013a
53351.5880	CCD	8548.0	-0.05786	BAV Lichten. DB	56262.9112	CCD	11076.0	-0.06571	Nagai 2013
53359.6483	CCD	8555.0	-0.05900	BAV Lichten. DB	56262.9126	CCD	11076.0	-0.06431	Samolyk 2015
53410.3205	PE	8599.0	-0.05870	Hübscher et al. 2005	56520.8743	CCD	11300.0	-0.06866	Samolyk 2013b.
53594.576*	vis	8759.0	-0.06466	Locher 2005	56654.4619	CCD	11416.0	-0.07061	Hoňková et al. 2015
53654.4681	CCD	8811.0	-0.05753	Hübscher et al. 2006	56654.4622	CCD	11416.0	-0.07031	Hoňková 2et al. 015
53733.938*	vis	8880.0	-0.05039	Nagai 2004b	56692.4656	CCD	11449.0	-0.07084	Hoňková et al. 2015
53755.8120	CCD	8899.0	-0.05743	BAV Lichten. DB	56692.4659	CCD	11449.0	-0.07054	Hoňková et al. 2015
53761.5703*	CCD	8904.0	-0.05730	BAV Lichten. DB	56953.8846	CCD	11676.0	-0.07279	Samolyk 2015
54044.8725	CCD	9150.0	-0.05710	BAV Lichten. DB	57355.8055	CCD	12025.0	-0.07219	Samolyk 2016
54059.8435	CCD	9163.0	-0.05734	BAV Lichten. DB					

*These minima timings deviated significantly for the $O-C$ trend and were not used in the period analysis.

Table 4. Orbital period jumps of XZ Per.

| Cycle
 Interval | ΔT
 (days) | ΔP
 $\left(10^{-5}\right.$ days) | Δ
 (seconds) |
| ---: | ---: | ---: | ---: | ---: |
| -16000 to -9900 | -0.1163 ± 0.0106 | -0.80 ± 0.07 | -0.69 ± 0.06 |
| -9900 to -7200 | -0.0422 ± 0.0152 | 0.64 ± 0.18 | 0.56 ± 0.15 |
| -7200 to -6400 | 0.0641 ± 0.0087 | -0.72 ± 0.13 | -0.62 ± 0.11 |
| -6400 to 2600 | -0.0063 ± 0.0003 | 0.38 ± 0.01 | 0.33 ± 0.01 |
| 2600 to 6700 | 0.0332 ± 0.0018 | -0.70 ± 0.04 | -0.60 ± 0.03 |
| 6700 to 8600 | -0.0087 ± 0.0050 | -0.02 ± 0.07 | -0.02 ± 0.06 |
| 8600 to 10100 | -0.1055 ± 0.0044 | 1.10 ± 0.05 | 0.95 ± 0.04 |
| 10100 to 11500 | 0.0704 ± 0.0080 | -0.62 ± 0.08 | -0.54 ± 0.07 |
| 11500 to 12400 | -0.0632 ± 0.0044 | 0.54 ± 0.04 | 0.46 ± 0.03 |

2 and 3 of Table 5. No appreciable third light contribution was seen in the lights. The values for the g^{\prime} and B passbands were very small, while the longer wavelengths, r^{\prime}, i^{\prime}, and V, were both small and negative. The normalized light curves for each passband, overlaid by the synthetic solution curves, are shown in Figure 8 with the residuals in Figure 9.

3.4. Spot model

The asymmetries in the light curves seen in Figures 8 and 9 are usually attributed to cool spots, hot regions such as faculae, or gas streams that impact one of the stars. At orbital phase 0.9 there is an excess of light seen in all the light curves. The residuals in Figure 9 show a sharp cutoff in this excess light when the stars approach primary eclipse. This feature is most likely caused by a hot spot on the primary star. Mass transferred from the Roche lobe filling secondary star would impact the primary star on its trailing side close to the equator (Zhang et al. 2014). An additional feature seen in the light curve residuals of Figure 9 is a light loss centered between orbital phase 0.3 to 0.4 for the DS1 observations. This indicates an under luminous region (cool spot) on the larger secondary star at the time the DS1 observations were acquired. This feature is not apparent in the DS2 data that were obtained six months later. Using вм3, a hot and cool spot were modeled for the DS1 observations and a single hot spot for DS2. The spot parameter's latitude,

Figure 5. Orbital period changes of XZ Per as a function of time.

Figure 6. Light curve of all V-band observations in standard magnitudes (top panel). The observations were binned with a phase width of 0.005 . The errors for each binned point are about the size of the plotted points. The B-V colors were calculated by subtracting the binned V magnitudes from the linearly interpolated binned B magnitudes.
longitude, size, and temperature were adjusted until a good fit resulted between the synthetic and observed light curves. New wD solutions were then made using the spot parameters from the BM3 fits. The best-fit wD spotted solution parameters are shown in columns 4 and 5 in Table 5. Figure 10 shows the final spotted model fits (solid lines) to the observed light curves and Figure 11 the residuals. For the DS1 solutions the sum of the residuals squared was 0.52 for the spotted model and 0.77 for the unspotted model (1.5 times larger) and for the DS2 solutions 0.26 for the spotted model and 0.54 for the unspotted model (2.1 times larger). A graphical representation of the spotted DS1 model is shown in Figure 12.

4. Discussion

The wD solutions indicate XZ Per is an evolved semi-detached system with the less massive secondary star filling its Roche lobe. Figure 13 compares the mass and radius of both stars with 61 semi-detached systems with well determined absolute parameters (Ibanoğlu et al. 2006). The primary star of XZ Per is close to the ZAMS like most of the other primaries in this group. The secondary along with all the other secondary stars in the sample are located on or above the TAMS line. The absolute stellar parameters of XZ Per can now be estimated. A main-sequence star with an effective temperature of 6680 K gives a mass of $1.41 \pm 0.08 \mathrm{M}_{\odot}$ (Pecaut and Mamajeck 2013). Using the mass ratio from the wD solution gives the secondary star's mass as $0.92 \pm 0.06 \mathrm{M}_{\odot}$ and applying Kepler's Third Law gives a distance between the mass centers of 6.125 ± 0.005 R_{\odot}. The mean stellar densities, $\bar{\rho}_{1}=0.39 \pm 0.01 \mathrm{~g} \mathrm{~cm}^{-3}$ and $\bar{\rho}_{2}$ $=0.14 \pm 0.03 \mathrm{~g} \mathrm{~cm}^{-3}$, were found using Mochnacki’s (1981) empirical relationship

$$
\begin{equation*}
\bar{\rho}_{1}=\frac{0.0189}{\mathrm{r}_{1}^{3}(1+\mathrm{q}) \mathrm{P}^{2}} \text { and } \bar{\rho}_{2}=\frac{0.0189 \mathrm{q}}{\mathrm{r}_{2}^{3}(1+\mathrm{q}) \mathrm{P}^{2^{\prime}}} \tag{6}
\end{equation*}
$$

where the stellar radius is normalized to the semi-major axis and P is in days. The visual luminosities, $\mathrm{L}_{1 \mathrm{~V}}=5.87 \pm 0.56 \mathrm{~L}_{\odot}$ and $\mathrm{L}_{2 \mathrm{~V}}=1.20 \pm 0.30 \mathrm{~L}_{\odot}$, were calculated using the bolometric magnitudes from the wD light curve program (LC) and bolometric corrections (Pecaut and Mamajek 2013). The lc output also provided the stellar radii and surface gravities of each star. All the estimated stellar parameters have been collected in Table 6. The distance to this system was determined from the precision parallax measurements of the Gaia spacecraft (Gaia 2016). The measured parallax is $\mathrm{p}=0.00234 \pm 0.00023$, which gives a distance of $\mathrm{d}=427 \pm 48 \mathrm{pc}$. Assuming no interstellar extinction, this distance combined with the apparent V magnitude at orbital phase 0.25 gives an absolute magnitude of $\mathrm{M}_{\mathrm{V}}=2.73 \pm 0.05$. This value compares well with the absolute magnitudes from the DS1 and DS2 model solutions, $\mathrm{M}_{\mathrm{V}}=2.74 \pm 0.10$ and $\mathrm{M}_{\mathrm{V}}=$ 2.77 ± 0.10, respectively. If the spectroscopically determined effective temperature for the primary star is accurate, these values indicate the interstellar extinction is likely small (a few hundredths of a magnitude). A higher temperature primary, on the other hand, would point to a larger extinction value. A precision spectroscopic study would be necessary to confirm the temperature of the primary star as well as provide direct determination of the stellar masses.

Mass transfer can occur in semi-detached systems when the secondary star fills its Roche lobe. The main-sequence primary is on the receiving end of the matter stream. Given the short orbital period of XZ Per, the distance between the two stars is small compared to their radii. The mass stream would likely be narrow and would directly impact the primary star near its equator, creating a small hot spot due to impact heating (Zhang et al. 2014; Ibanoğlu et al. 2006). The locations and sizes of the hot spots modeled in both wD solutions are consistent with an active mass stream from the secondary to the primary star. Additional small distortions in the light

Table 5. XZ Per synthetic light curve solutions.

parameter	$\begin{aligned} & \text { DS1- } g^{\prime}, r^{\prime}, i^{\prime} \\ & \text { no spots } \end{aligned}$	DS2-B, V no spots	$\begin{aligned} & \text { DS1- } g^{\prime}, r^{\prime}, i^{\prime} \\ & \text { with spots } \end{aligned}$	$D S 2-B, V$ with spots
$\mathrm{i}\left({ }^{\circ}\right)$	85.05 ± 0.42	84.97 ± 0.08	85.15 ± 0.11	85.03 ± 0.05
$\mathrm{T}_{1}(\mathrm{~K})$	${ }^{1} 6680$	${ }^{1} 6680$	${ }^{1} 6680$	${ }^{1} 6680$
$\mathrm{T}_{2}(\mathrm{~K})$	4624 ± 7	4636 ± 8	4628 ± 11	4636 ± 5
$\mathrm{q}\left(\mathrm{M}_{2} / \mathrm{M}_{1}\right)$	0.638 ± 0.013	0.629 ± 0.004	0.647 ± 0.005	0.637 ± 0.003
Ω_{1}	4.195 ± 0.038	4.272 ± 0.017	4.195 ± 0.013	4.247 ± 0.012
Ω_{2}	3.131	3.116	3.149	3.131
$\mathrm{L}_{1} /\left(\mathrm{L}_{1}+\mathrm{L}_{2}\right)(\mathrm{B})$	-	0.8906 ± 0.0002	-	0.8949 ± 0.0002
$\mathrm{L}_{1} /\left(\mathrm{L}_{1}+\mathrm{L}_{2}\right)(\mathrm{V})$	-	0.8185 ± 0.0005	-	0.8244 ± 0.0003
$\mathrm{L}_{1} /\left(\mathrm{L}_{1}+\mathrm{L}_{2}\right)\left(\mathrm{g}^{\prime}\right)$	0.8650 ± 0.0023	-	0.8644 ± 0.0004	-
$\mathrm{L}_{1} /\left(\mathrm{L}_{1}+\mathrm{L}_{2}\right)\left(\mathrm{r}^{\prime}\right)$	0.7802 ± 0.0035	-	0.7788 ± 0.0007	-
$\mathrm{L}_{1} /\left(\mathrm{L}_{1}+\mathrm{L}_{2}\right)\left(\mathrm{i}^{\prime}\right)$	0.7337 ± 0.0041	-	0.7318 ± 0.0008	-
r_{1} pole	0.2703 ± 0.0020	0.2724 ± 0.0013	0.2818 ± 0.0011	0.2779 ± 0.0010
r_{1} point	0.2813 ± 0.0022	0.2848 ± 0.0016	0.2964 ± 0.0014	0.2918 ± 0.0012
r_{1} side	0.2747 ± 0.0021	0.2771 ± 0.0014	0.2872 ± 0.0012	0.2831 ± 0.0011
r_{1} back	0.2790 ± 0.0022	0.2821 ± 0.0015	0.2930 ± 0.0013	0.2887 ± 0.0012
r_{2} pole	0.3095 ± 0.0019	0.3179 ± 0.0006	0.3185 ± 0.0006	0.3198 ± 0.0004
r_{2} point	0.4417 ± 0.0019	0.4524 ± 0.0006	0.4530 ± 0.0006	0.4547 ± 0.0004
r_{2} side	0.3234 ± 0.0020	0.3324 ± 0.0006	0.3330 ± 0.0007	0.3344 ± 0.0004
r_{2} back	0.3557 ± 0.0020	0.3646 ± 0.0006	0.3651 ± 0.0006	0.3665 ± 0.0004
$\sum \operatorname{res}^{2}$	0.77	0.52	0.54	0.26
spot parameters			Star 1-Hot Spot	Star 1-Hot Spot
colatitude (${ }^{\circ}$)	-	-	90 ± 14	72 ± 2
longitude (${ }^{\circ}$)	-	-	21 ± 3	10 ± 1
spot radius (${ }^{\circ}$)	-	-	10 ± 3	10 ± 2
temp.-factor	-	-	1.13 ± 0.07	1.17 ± 0.04
			Star 2-Cool Spot 1	
colatitude (${ }^{\circ}$)	-	-	46 ± 18	-
longitude (${ }^{\circ}$)	-	-	73 ± 4	-
spot radius (${ }^{\circ}$)	-	-	24 ± 8	-
temp.-factor	-	-	0.85 ± 0.09	-

${ }^{1}$ Assumed.
Note: The errors in the stellar parameters result from the least-squares fit to the model. The actual uncertainties of the parameters are considerably larger (ex. T_{1} and T_{2} have uncertainties of about $\pm 180 \mathrm{~K}$).

Figure 7. Results of the q-search showing the relation between the sum of the residuals squared and the mass ratio q .
curves at other orbital phases may also be effects of the impact heating, as diffusion and convection transport energy beyond the impact region.

The conservative mass transfer supported by the impact heating on the primary star would result in the widening of the orbit and an increasing period (Huang 1963). The least-squares solution for the quadratic ephemeris (section 3) gives a secular period decrease of $\mathrm{dP} / \mathrm{dt}=-1.27 \times 10^{-7} \mathrm{~d} \mathrm{yr}^{-1}$. This observed period decrease indicates the mass and angular momentum for the two stars is not conserved. Magnetic braking, which requires a stellar wind and a stellar magnetic field, is a possible cause of the angular momentum loss. XZ Per has a late-type secondary (spectral type K4) with a deep convective envelope. This convection combined with its rapid rotation should make the star magnetically active. The dark spot modeled on the secondary star and the changes in spot configuration between the two observational data sets is a good indication of magnetic activity. This could be the mechanism causing the mass and angular momentum loss and the resulting decrease in the orbital period (Hall 1989). There are a number of other Algols that have decreasing orbital periods with comparable $\mathrm{dP} /$ dt values (21 in Table 6 of Yang and Wei 2009). In addition, a

Figure 8. The wD model fit without spots (solid curve) to the observed normalized flux curves for each passband. From top to bottom the passbands are Sloan i', Sloan r', Sloan g', Johnson V, and Johnson B. Each curve is offset by 0.2 for this combined plot. The best-fit parameters are given in columns 2 and 3 of Table 5 . Error bars are omitted from the points for clarity.

Figure 9. The residuals for the best-fit wd model without spots. Error bars are omitted from the points for clarity.

Figure 10. The wD model fit with spots (solid curve) to the observed normalized flux curves for each passband. From top to bottom the passbands are Sloan i', Sloan r^{\prime}, Sloan g^{\prime}, Johnson V, and Johnson B. Each curve is offset by 0.2 for this combined plot. The best-fit parameters are given in columns 4 and 5 of Table 5. Error bars are omitted from the points for clarity.

Figure 11. The residuals for the best-fit wD models with spots. Error bars are omitted from the points for clarity.

Figure 12. Roche Lobe surfaces of the best-fit wD spot DS1 model with orbital phase shown below each diagram.

Figure 13. Positions of both components of XZ Per on the Mass-Radius diagram of 62 semi-detached Algol systems with well determined parameters. Closed circles are the primary stars and open circles the secondary stars. The triangle and the diamond are the primary and the secondary of XZ Per, respectively. Solid and dotted lines refer to ZAMS and TAMS, respectively, calculated from Tout et al. (1996).
number of Algol systems (RW CrB, TU Her, BO Mon, Y Psc, AY Gem, UU And, TY Peg, X Tri, and Z Per) also show sudden period jumps superimposed on secular decreasing periods that are similar to XZ Per (Qian 2000a, 2000b, 2001a, 2001b, 2002). The possible mechanism for the observed alternating period changes in semi-detached binaries was discussed by van ' T Veer (1993) and investigated by Qian (2002), who finds both the secular period decrease and the irregular period jumps can be explained by the variable interplay between magnetic coupling and spin orbit coupling. A secular period decrease could also result from a small fraction of the transferred mass forming a circumbinary disk (Chen et al. 2006). Detailed calculations indicate the orbital angular momentum can be efficiently removed by a thin disk surrounding both stars, but observations of XZ Per with time-resolved spectroscopy found no evidence of emission from a gaseous disk (Kaitchuck and Honeycutt 1982).

The observed light curves and photometric solutions of XZ Per look very similar to EP Cas, AK CMi, FG Gem, and DF Pup, which were classified as near contact binaries (NCB) (Yang et al. 2013) where the secondary star fills the Roche lobe and the primary is inside one. Yakut and Eggleton (2005)

Figure 14. Positions of both components of XZ Per on the Mass-Luminosity diagram of 25 semi-detached NCB Algol systems with well determined parameters. Closed circles are the primary stars and open circles the secondary stars. The triangle and diamond are the primary and the secondary of XZ Per, respectively. Solid and dotted lines refer to ZAMS and TAMS, respectively, calculated from Tout et al. (1996).

Table 6. Provisional stellar parameters for XZ Per.

Parameter	Symbol	Value
Stellar masses	$\mathrm{M}_{1}\left(\mathrm{M}_{\odot}\right)$	1.41 ± 0.08
	$\mathrm{M}_{2}\left(\mathrm{M}_{\odot}\right)$	0.91 ± 0.06
Semi-major axis	$\mathrm{a}\left(\mathrm{R}_{\odot}\right)$	6.120 ± 0.005
Stellar radii	$\mathrm{R}_{1}\left(\mathrm{R}_{\odot}\right)$	1.75 ± 0.03
	$\mathrm{R}_{2}\left(\mathrm{R}_{\odot}\right)$	2.09 ± 0.12
Surface gravity	$\operatorname{log~g}_{1}(\mathrm{cgs})$	4.10 ± 0.03
	$\log _{2}(\mathrm{cgs})$	3.76 ± 0.04
Mean density	$\bar{\rho}_{1}\left(\mathrm{~g} \mathrm{~cm}^{-3}\right)$	0.37 ± 0.01
	$\bar{\rho}_{2}\left(\mathrm{~g} \mathrm{~cm}^{-3}\right)$	0.14 ± 0.03
Stellar luminosity	$\mathrm{L}_{1 \mathrm{v}}\left(\mathrm{L}_{\odot}\right)$	5.9 ± 0.6
	$\mathrm{~L}_{2 \mathrm{~V}}\left(\mathrm{~L}_{\odot}\right)$	1.2 ± 0.3
Bolometric magnitude	$\mathrm{M}_{\mathrm{bol}, 1}$	2.9 ± 0.1
	$\mathrm{M}_{\mathrm{bol}, 2}$	4.1 ± 0.2

Values in this table are provisional. Radial velocity observations are necessary for direct determination of M_{1}, M_{2}, and a.
compiled a list of 25 NCBs with well determined parameters. Figure 14 shows a mass luminosity diagram (M-L) of the components of these binaries with XZ Per included. The primary star of XZ Per (open triangle in Figure 14) lies about midway between the zero-age main-sequence (ZAMS) line and the terminal-age main-sequence (TAMS), as do most of the other NCB primary stars. XZ Per's secondary star (filled diamond in Figure 14) lies close to the TAMS, again indicating it has evolved. Most of the other secondary stars in this NCB sample are at a similar point in their evolution. The filling factor for the primary star can determine how close the star is to filling its lobe. It is defined as $f_{1}=R_{1} / R_{L}$, where R_{1} is the radius
of the primary star and R_{L} is the volume radius of the Roche lobe. Eggleton's (1983) formula gives $\mathrm{R}_{\mathrm{L}} / \mathrm{a}$ as a function of mass ratio (q),

$$
\begin{equation*}
\frac{\mathrm{R}_{\mathrm{L}}}{\mathrm{a}}=\frac{0.49 \mathrm{q}^{2 / 3}}{0.6 \mathrm{q}^{2 / 3}+\ln \left(1+\mathrm{q}^{1 / 3}\right)^{\prime}} \tag{7}
\end{equation*}
$$

where a is the separation between the star's mass centers. Using the photometric solution from DS1 gives a value of $\mathrm{f}_{1}=84 \%$, which is higher than many semi-detached binaries that show a secular period decrease (Yang and Wei 2009). XZ Per appears to be at an intermediate evolutionary state, beginning life as a close detached binary and eventually, with additional mass and angular momentum loss, becoming a W UMa contact binary (Yakut and Eggleton 2005). Model calculations indicate XZ Per should start its contact phase 4-5 Gyr after its formation with the two stars ultimately coalescing into a single star (Gazeas and Stepień 2008).

5. Conclusions

Two new sets of photometric observations of XZ Per resulted in five complete light curves that were used for investigation of this system. Based on these observations, photometric solutions were obtained for both data sets. The results of a detailed analysis of the DS1 observations and the period study gave the following results:

1. XZ Per is a semi-detached Algol-type eclipsing binary with a mass ratio of $q=0.647$ and an orbital inclination of $\mathrm{i}=85.2^{\circ}$. The effective temperature of the primary star is $\mathrm{T}_{1}=6680 \mathrm{~K}$, and the secondary $\mathrm{T}_{2}=4628 \mathrm{~K}$. The primary is a F3 main-sequence star and the secondary an evolved K4 star (possibly a subgiant). No third light was found in the system but a hot spot was modeled on the primary star and a large cool spot on the secondary. Mass transferred from the secondary star is the likely cause of the hot spot on the primary. The cool spot was not necessary for the DS2 solution, indicating a changing spot configuration and therefore a magnetically active secondary star.
2. The period study found a secular decrease in the orbital period at a rate of $\mathrm{dP} / \mathrm{dt}=-1.27 \times 10^{-7} \mathrm{~d} \mathrm{yr}^{-1}$. Magnetic braking is likely the mechanism causing mass and angular momentum loss. In addition, the $(O-C)$ data displayed several alternating period jumps superimposed on the secular decrease. The fill-out of 84% for the primary star indicates a near contact configuration. With additional angular momentum and mass loss, the fill-out of the primary star will continue to increase as the orbital period decreases until it eventually fills its Roche lobe.

Future spectroscopic and precision photometric observations would be important in monitoring orbital period changes and would allow determination of absolute parameters.

6. Acknowledgements

This research was made possible through the use of the AAVSO Photometric All-Sky Survey (APASS), funded by the

Robert Martin Ayers Sciences Fund. This research has made use of the VizieR catalogue access tool and data from the SIMBAD database (operated at CDS, Strasbourg, France), the European Space Agency (ESA) mission Gaia (http://www.cosmos. esa.int/gaia), and the Lichtenknecker-Database of the BAV. The author would especially like to acknowledge the observers of AAVSO, BAV, VSOLJ, and other organizations that provided observations spanning several decades. Without their tireless efforts, the period study in this paper would not have been possible. The author is grateful to Norman Markworth for his careful reading of the manuscript and his valuable comments and suggestions.

References

Baldwin, M. 1974, J. Amer. Assoc. Var. Star Obs., 3, 60.
Baldwin, M. 1975, J. Amer. Assoc. Var. Star Obs., 4, 86.
Baldwin, M. 1976a, J. Amer. Assoc. Var. Star Obs., 5, 29.
Baldwin, M. 1976b, J. Amer. Assoc. Var. Star Obs., 5, 84.
Baldwin, M. 1977, J. Amer. Assoc. Var. Star Obs., 6, 24.
Baldwin, M. E., and Samolyk, G. 1993, Observed Minima Timings of Eclipsing Binaries, Number 1, (https://www. aavso.org/observed-minima-timings-eclipsing-binaries)
Baldwin, M. E., and Samolyk, G. 1997, Observed Minima Timings of Eclipsing Binaries, Number 4, (https://www. aavso.org/observed-minima-timings-eclipsing-binaries)
Baldwin, M. E., and Samolyk, G. 2002, Observed Minima Timings of Eclipsing Binaries, Number 7, (https://www. aavso.org/observed-minima-timings-eclipsing-binaries)
Beob. der Schweizerischen Astron. Ges. (BBSAG). 19722002, BBSAG Bull., Nos. 2-127 (https://www.calsky.com/ cs.cgi/Deep-Sky/8/3?\&lang=en).
Berliner Arb. Veränderl. Sterne. 2015, LichtenkneckerDatabase of the BAV (http://www.bav-astro.eu/index.php/ veroeffentlichungen/lichtenknecker-database)
Bradstreet, D. H., and Steelman, D. P. 2002, Bull. Amer. Astron. Soc., 34, 1224.
Brancewicz, H. K., and Dworak, T. Z. 1980, Acta Astron., 30, 501.
Budding, E., Erdem, A., Çiçek, C., Bulut, I., Soydugan, F., Soydugan, E., Bakiş, V., and Demircan, O. 2004, Astron. Astrophys., 417, 263.
Chen, W.-C., Li, Z.-D., and Qian, S.-B. 2006, Astrophys. J., 649, 973.
Diethelm, R. 2003, Inf. Bull. Var. Stars, No. 5438, 1.
Diethelm, R. 2004, Inf. Bull. Var. Stars, No. 5543, 1.
Diethelm, R. 2009, Inf. Bull. Var. Stars, No. 5894, 1.
Diethelm, R. 2010, Inf. Bull. Var. Stars, No. 5945, 1.
Diethelm, R. 2011, Inf. Bull. Var. Stars, No. 5960, 1.
Diethelm, R. 2012, Inf. Bull. Var. Stars, No. 6011, 1.
Doğru, S. S., Erdem, A., Aliçavuş, F., Akin, T., and Kanvermez, C. 2011, Inf. Bull. Var. Stars, No. 5988, 1.

Doğru, S. S., Erdem, A., Donmez, A., Bulut, A., Akin, T., Dogru, D., Çiçek, C., and Soydugan, F. 2009, Inf. Bull. Var. Stars, No. 5893, 1.
Eggleton, P. P. 1983, Astrophys. J., 268, 368.
Erkan, N., Erdem, A., Akin, T., Aliçavuş, F., and Soydugan, F. 2010, Inf. Bull. Var. Stars, No. 5924, 1.

Flin, P. 1969, Inf. Bull. Var. Stars, No. 328, 1.
Gaia Collaboration, et al. 2016, Astron. Astrophys., 595A, 2 (Gaia Data Release 1).
Gazeas, K., and Stepień, K. 2008, Mon. Not. Roy. Astron. Soc., 390, 1577.
Hall, D. S. 1989, Space Sci. Rev., 50, 219.
Henden, A. A., et al. 2014, AAVSO Photometric All-Sky Survey, data release 9, (https://www.aavso.org/apass).
Hoňková, K. et al. 2013, Open Eur. J. Var. Stars, No. 160, 1.
Hoňková, K. et al. 2015, Open Eur. J. Var. Stars, No. 168, 1.
Huang, S. S. 1963, Astrophys. J., 138, 471
Hübscher, J. 2011, Inf. Bull. Var. Stars, No. 5984, 1.
Hübscher, J., Paschke, A., and Walter, F. 2005, Inf. Bull. Var. Stars, No. 5657, 1.
Hübscher, J., Paschke, A., and Walter, F. 2006, Inf. Bull. Var. Stars, No. 5731, 1.
Hübscher, J., Steinbach, H.-M., and Walter, F. 2009, Inf. Bull. Var. Stars, No. 5889, 1.
Ibanoğlu, C. et al. 2006, Mon. Not. Roy. Astron. Soc., 373, 435.
Kafka, S. 2015, variable star observations from the AAVSO International Database (https://www.aavso.org/aavso-international-database).
Kaitchuck, R. H., and Honeycutt, R. K. 1982, Publ. Astron. Soc. Pacific, 94, 532.
Kaitchuck, R. H., Honeycutt, R. K., and Schlegel, E. M. 1985, Publ. Astron. Soc. Pacific, 97, 1178.
Klimek, Z. 1972, Inf. Bull. Var. Stars, No. 637, 1.
Klimek, Z. 1973, Inf. Bull. Var. Stars, No. 779, 1.
Kreiner, J. M. 1971, Acta Astron., 21, 365.
Kurucz, R. L. 1993, in Light Curve Modeling of Eclipsing Binary Stars, ed. E. F. Milone, IAU Symp. 151, Springer, New York, 93.
Lavrov, M. I. 1971, Soviet Astron., 15, 2, 236.
Locher, K. 2005, Open Eur. J. Var. Stars, No. 3, 1.
Lucy, L. B. 1968, Astrophys. J., 151, 1123.
Malkov, O. Yu., Oblak, E., Snegireva, E. A., and Torra, J. 2006, Astron. Astrophys., 446, 785.
Mallama, A. D. 1980, Astrophys. J., Suppl. Ser., 44, 241.
Mirametrics. 2015, Image Processing, Visualization, Data Analysis, (http://www.mirametrics.com)
Mochnacki, S. W. 1981, Astrophys. J., 245, 650.
Nagai, K. 2004a, Bull. Var. Star Obs. League Japan, No. 43, 5. Nagai, K. 2004b, Bull. Var. Star Obs. League Japan, No. 44, 7.
Nagai, K. 2012, Bull. Var. Star Obs. League Japan, No. 53, 6. Nagai, K. 2013, Bull. Var. Star Obs. League Japan, No. 55, 6.
Nelson, R. 2000, Inf. Bull. Var. Stars, No. 4840, 1.
Nelson, R. 2003, Inf. Bull. Var. Stars, No. 5371, 1.
Pecaut, M. J., and Mamajek, E. E. 2013, Astrophys. J., Suppl. Ser., 208, 9 (http://www.pas.rochester.edu/~emamajek/ EEM_dwarf_UBVIJHK_colors_Teff.txt).

Popper, D. M. 1996, Astrophys. J., Suppl. Ser., 106, 133.
Qian, S. 2000a, Astron. J., 119, 901.
Qian, S. 2000b, Astron. J., 119, 3064.
Qian, S. 2001a, Astron. J., 121, 1614.
Qian, S. 2001b, Astron. J., 122, 1561.
Qian, S. 2002, Publ. Astron. Soc. Pacific, 114, 650.
Robinson, I. J. 1967, Inf. Bull. Var. Stars, No. 221, 3.
Ruciński, S. M. 1969, Acta Astron., 19, 245.
Saijo, K. 1997, Bull. Var. Star Obs. League Japan, No. 23, 1.
Samolyk, G. 2008, J. Amer. Assoc. Var. Star Obs., 36, 171.
Samolyk, G. 2009, J. Amer. Assoc. Var. Star Obs., 37, 44.
Samolyk, G. 2010, J. Amer. Assoc. Var. Star Obs., 38, 183.
Samolyk, G. 2011, J. Amer. Assoc. Var. Star Obs., 39, 177.
Samolyk, G. 2012, J. Amer. Assoc. Var. Star Obs., 40, 975.
Samolyk, G. 2013, J. Amer. Assoc. Var. Star Obs., 41, 122.
Samolyk, G. 2013, J. Amer. Assoc. Var. Star Obs., 41, 328.
Samolyk, G. 2015, J. Amer. Assoc. Var. Star Obs., 43, 77.
Samolyk, G. 2016, J. Amer. Assoc. Var. Star Obs., 44, 69.
Samus, N. N., Kazarovets, E. V., Durlevich, O. V., Kireeva, N. N., and Pastukhova, E. N. 2017, Astron. Rep., 61, 80 (General Catalogue of Variable Stars, version GCVS 5.1.; http://www.sai.msu.su/gcvs/gcvs/index.htm).
Szafraniec, R. 1960, Acta Astron., 10, 99.
Terrell, D., and Wilson, R. E. 2005, Astrophys. Space Sci., 296, 221.
Todoran, I. 1967, Inf. Bull. Var. Stars, No. 187, 1.
Tout, C. A., Pols, O. R., Eggleton, P. P., and Han, Z. 1996, Mon. Not. Roy. Astron. Soc., 281, 257.
van Hamme, W. 1993, Astron. J., 106, 2096.
van Hamme, W., and Wilson, R. E. 1998, Bull. Amer. Astron. Soc., 30, 1402.
Van 'T Veer, F. 1993, in New Frontiers in Binary Star Research, ed. K.-C. Leung, I.-S. Nha, ASP Conf. Ser. 38, 229.
Whitney, B. S. 1959, Astron. J., 64, 258.
Wilson, R. E. 1978, Astrophys. J., 224, 885.
Wilson, R. E., and Devinney, E. J. 1971, Astrophys. J., 166, 605.

Wood, B. D., and Forbes, J. E. 1963, Astron. J., 68, 257.
Yakut, K., and Eggleton, P. P. 2005, Astrophys. J., 629, 1055.
Yang, Y.-G., Dai, H.-F., He, J.-J., Zhang, J., and Ding, W. 2013, Publ. Astron. Soc. Japan, 65, 45.
Yang, Y.-G., and Wei, J.-Y. 2009, Astron. J., 137, 226.
Zejda, M., Mikulasek, Z., and Wolf, M. 2006, Inf. Bull. Var. Stars, No. 5741, 1.
Zhang, J., Qian, S.-B., and Jiang, L.-Q. 2014, Res. Astron. Astrophys., 14, 179.

Observation of a Deep Visual "Eclipse" in the WC9-Type Wolf-Rayet Star, WR 76

Rod Stubbings
Tetoora Road Observatory, 2643 Warragul-Korumburra Road, Tetoora Road, 3821,Victoria, Australia; stubbo@sympac.com.au

Peredur Williams
Institute for Astronomy, Royal Observatory, Blackford Hill, Edinburgh, EH9 3HJ, United Kingdom; pmw@roe.ac.uk

Received February 27, 2017; revised March 22, 2017; accepted March 23, 2017

Abstract

The WC9-Type Wolf-Rayet star WR 76 is one of the most prolific dust makers identified from its infrared emission. WR 76 experienced a deep fading eclipse in 2016. The ~ 3.1 magnitude depth of the eclipse exceeds fadings in similar eclipses observed in WR stars thus far. Conclusions from recent and earlier analyses of eclipses observed suggests that WR 76 may be a prolific eclipser.

1. Introduction

Abrupt visual transient fading events, sometimes referred to as "eclipses," a term that will be used throughout this paper, can be caused by the obscuration by dust in the line of sight. Such eclipses have been observed in R Coronae Borealis ($\mathrm{R} \mathrm{CrB} \mathrm{)} \mathrm{stars}$ (Loreta 1934; O'Keefe 1939) and classical novae (Gehrz 1988) for many decades, and more recently in WC-type Wolf-Rayet stars (Veen et al. 1998). All three sub-classes also frequently exhibit infrared (IR) emission from dust heated by the stellar radiation (Feast and Glass 1973; Williams et al. 1987), These two manifestations of dust formation are complementary in the information they convey. The IR emission measures all the dust, not restricted to that in the line of sight, and can indicate the dust grain temperature and chemistry, which is usually carbon, but sometimes can be more complex. This is evident in the following subclasses: R CrB stars (García-Hernández et al. 2013), novae (Helton et al. 2014), and WR stars (Chiar and Tielens 2001). On the other hand, the eclipses can give an indication of the sizes of grains if they have been observed in more than one passband (Veen et al.1998; Fahed et al. 2009).

From the IR light curves that show periodic outbursts, such as the prototype WR 140 (Williams et al. 1990), and IR imaging that shows rotating "pinwheel" structures in the prototype WR 104 (Tuthill et al. 1999), dust formation is found to be related to wind interactions in WR+OB binary systems. The WR numbers for the Wolf-Rayet stars in this paper were assigned by van der Hucht et al. (1981) and van der Hucht (2001), who also give alternative designations. In contrast, the incidence of eclipses by WR stars appears to be sporadic. The suggestion that the eclipses of WR 104 had the same period as the rotating dust pinwheel (Kato et al. 2002a) was not supported in a longterm monitoring study (Williams 2014) of dust-making WC stars based on the V-band photometry in the ASAS-3 survey (Pojmański 2002). The ASAS-3 data were accumulated from 2001 to 2009, which, allowing for seasonal and other gaps, provided data equivalent to around four years of continuous coverage for each star. The highest frequency of eclipse events was shown by WR 104, amounting to 7/8 of the time, but the IR images of the dust pinwheel (Tuthill et al. 2008) indicate that eclipse-made dust was not an important contributor to its
dust cloud. Several eclipses were also observed from WR 106 and other WC type stars in the ASAS-3 data.

WR 53 showed no optical eclipses in the 2001-2009 ASAS-3 data, and exhibited no variation or shallow eclipse activity. Independent visual and additional photometric monitoring of WR 53 commenced in 2011 to look for variations, and surprisingly a deep 1-magnitude eclipse in 2015 was discovered (Stubbings 2015). WR 53 was also one of the WC8-9 stars known from its IR emission to be a dust maker (Williams et al. 1987), re-radiating about 3.6% of its UV-optical flux in the IR. The corresponding fraction for WR 104 was 60%, which led to the suggestion of a possible correlation between dust luminosity of the IR and the frequency of eclipses (Williams 2014). Other stars known to be prolific dust makers from their IR emissions, WR 48a, WR76, and WR118, were too faint for the ASAS-3 survey to detect eclipses (Williams 2014). These stars were proposed for monitoring for visual eclipses to test the suggested correlation concerning dust luminosity of the IR and eclipses (Williams 2014). The brightest of these WR stars for visual monitoring is WR 76, (J2000: R.A. $16^{\mathrm{h}} 40^{\mathrm{m}} 05.25^{\mathrm{s}}$, Dec. $-45^{\circ} 41^{\prime} 12.7^{\prime \prime}$), and was measured at $\mathrm{V}_{\mathrm{o}}=15.46$ (Fahed et al. 2009). WR 76 is a WC9 star (Torres et al. 1986) which reradiates $\sim 68 \%$ of its optical-UV luminosity in the IR (Williams et al. 1987), and this was selected for concentrated monitoring to search for eclipses in the present study.

2. Observations

WR 76 has a visual observing window from February to November. A visual monitoring program commenced in April 2016 to search for eclipses. A visual chart with comparison stars of $15.2,15.5$, and 16.1 was used for reference. After months of monitoring WR76, which remained at around 15.2, a small dip was noticed on JD 2457606 (August 4) at a visual magnitude of 15.5. One of the authors (RS) contacted Peter Nelson to check WR 76 with a V-band image; he was able to obtain an image and time series observations 3 days later, giving $V=14.7$ with no fading trend apparent. On the same night the author noticed WR 76 had returned back to around 15.3 visually. WR 76 remained at a visual magnitude of 15.3 until JD 2457653 (September 26), when again it declined to 15.5 and remarkably fainter to 16.0
the following night. A V-band image was obtained four days later on JD 2457658 at $\mathrm{V}=15.29$. The data indicated $\mathrm{a} \sim 0.6$ magnitude drop in V and ~ 0.7 visually, therefore a definite eclipse event was in progress. The fading trend continued and on JD 2457667 (October 6) a visual magnitude of 16.8 was recorded. At this point communication was made with Nidia Morrell (2016) to see if spectroscopy could be obtained from the El Leoncito Astronomical Complex astronomical observatory in Argentina. Unfortunately the elevation of WR 76 was then below the limit of their telescope. An additional V-band image was taken by Nelson on JD 2457773 (October 12) indicating WR 76 was now in a deep eclipse at $V=17.7$.

With the full Moon and cloud cover making it difficult to observe visually, the next available observations were obtained on JD 2457685 (October 24) at a visual magnitude of 17.3 and also a V -band image at $\mathrm{V}=17.4$. The rising branch of the eclipse progressed to maximum light on JD 2457702 (November 10) at a visual magnitude of 15.0. The eclipse had commenced on JD 2457653 (September 22) and recovered on JD 2457702 (November 10) with a duration of ~ 49 days and a depth of ~ 3.1 magnitudes in V and perhaps quite fainter due to the gap in data. The possibility of a slight minor eclipse on JD 2457606 (August 4) could also be linked to the main eclipse event. The light curve is presented in Figure 1. The visual difference of $0.5-0.6 \mathrm{mag}$. at maximum from Johnson V could be due to spectral aspects of the variable's light and does not affect the result.

3. Discussion

The eclipse in WR76 observed in 2016 is deeper than those observed in WR 104 (Kato et al. 2002a; Williams 2014) and comparable to a 2.9-magnitude eclipse observed in WR 106 by Kato et al. (2002b) throughout an eight-year monitoring period. Low level variation of $\sigma(\mathrm{v})=0.06$ during a one-month observing run had been observed in WR 76 by Fahed et al. (2009) and from comparison with variation in ($\mathrm{v}-\mathrm{i}$) was interpreted in terms of variable extinction by dust. Observations of WR 76 in the Bochum Galactic Disk Survey (Hackstein et al. 2015) showed a well-defined $\Delta \mathrm{r} \sim 0.4$-magnitude eclipse in mid-2013 followed by another fading into a deeper eclipse at $\Delta \mathrm{r} \sim 1.7$ magnitude and parts of other eclipses in shorter observing runs in 2012 and 2014, all of which are presented in Figure 2. Unfortunately, the cadence of the observations, which was not dedicated to this star but was surveying the whole field for variables, has not allowed for the deeper eclipse to be defined. The relative amplitudes $\Delta \mathrm{r} / \Delta \mathrm{i} \sim 1.2$ are also consistent with eclipsing by sub-micron particles (cf. Veen et al. 1998; Fahed et al. 2009), suggesting that the visual eclipse reported in this paper has a similar origin.

In this case, the fading by about 3 mag. over approximately 25 days from JD 2457650 would have been caused by the rapid formation of a cloud of dust particles in the line of sight, which covered the stellar disk. The dust that would have formed in the stellar wind of WR 76 is expected to have a terminal velocity near $1000 \mathrm{~km} / \mathrm{s}$ (van der Hucht 2001), which would have dissipated the cloud and reduced its extinction. While WR 76 was fading, the formation rate of the dust must have been high

Figure 1. AAVSO light curve showing the deep ~ 3.1 magnitude eclipse beginning on JD 2457653-2457702 (September 22-November 10) and lasting for 49 days before returning to maximum light. Black circles are visual data, green squares are Johnson V.

Figure 2. Observations of WR 76 in the Bochum Galactic Disk Survey showing recorded eclipses in r and i magnitudes.
enough to more than compensate for its dissipation. When dust formation ceased and the existing dust was dissipated, the extinction fell and the flux recovered to its pre-eclipse level over a period of about 20 days. Veen et al. (1998) developed models to fit the eclipse light curves of three other WR stars, WR 103, WR 121, and WR 113, and found that the dust was forming significantly closer to the stars than the amorphous carbon dust clouds modelled from IR photometry by Williams et al. (1987). Support for the scale of the IR dust cloud models comes from detailed modelling of the dust pinwheel around WR 104 by Harries et al. (2004). This suggests that the dust grains modelled by Veen et al. (1998) would not have been able to survive heating in the stellar radiation field. On the other hand, independent evidence for the presence of scattering particles extremely close to the WC star component of WR 113 was provided by the observations of David-Uraz et al. (2012). This suggests that the particles responsible for the eclipses observed from WR stars may be more refractory and have optical properties very different from those of the amorphous carbon grains believed to be responsible for the IR emission. Further study of these phenomena would be helpful in understanding the formation of dust in the most hostile environments.

4. Conclusion

The combined results from recent and earlier studies of the deep eclipse observed only during one season of monitoring suggests
that WR 76 may be a prolific eclipser, but further observations are required in order to test this and characterize these events.

In the four seasons in which WR 76 was observed in the Bochum Galactic Disk Survey, eclipses or parts of eclipses were observed in three out of the four, which also implies that eclipses may be rather frequent. The eclipse observed in WR 76 is one of the deepest known thus far compared to deep eclipses observed in WR 104 and WR 106. Eclipses found in WR stars are generally rare, with only one detected eclipse from WR 53 in fourteen years observing, apart from the heavier dust makers, suggesting WR 76 could be an excellent subject for the further study of this phenomenon.

5. Acknowledgements

We acknowledge with thanks the variable star observations from the AAVSO International Database (Kafka 2016) contributed by observers worldwide and used in this research. This research has made use of the International Variable Star Index (VSX) database (Watson et al. 2015), operated at AAVSO, Cambridge, Massachusetts, USA, and the Bochum Galactic Disk Survey. We would like to thank Peter Nelson for providing V-band images. We would also like to thank the anonymous referee whose comments and suggestions were helpful.

References

Chiar, J. E., and Tielens, A. G. G. M. 2001, Astrophys. J., 550, L207.
David-Uraz, A., et al. 2012, Mon. Not. Roy. Astron. Soc., 426, 1720.

Fahed, R., Moffat, A. F. J., and Bonanos, A. Z. 2009, Mon. Not. Roy. Astron. Soc., 392, 376
Feast, M. W., and Glass, I. S. 1973, Mon. Not. Roy. Astron. Soc., 161, 293.
García-Hernández, D. A., Rao, N. K., and Lambert, D. L. 2013, Astrophys. J., 773, 107.
Gehrz, R., D. 1988, Ann. Rev. Astron. Astrophys., 26, 377.
Hackstein, M., et al. 2015, Astron. Nachr., 336, 590 (data retrieved from table J/AN/336/590 at http://vizier.u-strasbg.fr).

Harries, T. J., Monnier, J. D., Symington, N. H., and Kurosawa, R. 2004, Mon. Not. Roy. Astron. Soc., 350, 565.

Helton, L. A., Evans, A., Woodward, C. E., Gehrz, R. D., and Vacca, W. 2014, in Stella Novae: Past and Future Decades, ed. P. A. Woudt, V. A. R. M. Ribeiro, ASP Conf. Ser. 490, Astronomical Society of the Pacific, San Francisco, 261.
Kafka, S. 2016, variable star observations from the AAVSO International Database (https://www.aavso.org/aavso-international-database).
Kato, T., Haseda, K., Yamaoka, H., and Takamizawa, K. 2002a, Pub. Astron. Soc. Japan, 54, L51.
Kato, T., Haseda, K., Takamizawa, K., and Yamaoka, H. 2002b, Astron. Astrophys., 393, L69.
Loreta, E. 1934, Astron. Nachr., 254, 151.
Morrell, N. 2016, private communication.
O'Keefe, J. A. 1939, Astrophys. J., 90, 294.
Pojmański, G. 2002, Acta Astron., 52, 397.
Stubbings, R. 2015, J. Amer. Assoc. Var. Star Obs., 43, 163.
Torres, A. V., Conti, P. S., and Massey, P. 1986, Astrophys. J., 300, 379.
Tuthill, P. G., Monnier, J. D., and Danchi, W. C. 1999, Nature, 398, 487.
Tuthill, P. G., Monnier, J. D., Lawrance, N., Danchi, W. C., Owocki, S. P., and Gayley, K. G. 2008, Astrophys. J., 675, 698.
van der Hucht, K. A. 2001, New Astron. Rev., 45, 135.
van der Hucht, K. A., Conti, P. S., Lundstrom, I., and Stenholm, B. 1981, Space Sci. Rev., 28, 227.

Veen, P. M., van Genderen, A. M., van der Hucht, K. A., Li, A., Sterken, C., and Dominik, C. 1998, Astron. Astrophys., 329, 199.
Watson, C., Henden, A. A., and Price, C. A. 2015, AAVSO International Variable Star Index VSX (Watson+, 20062015; http://www.aavso.org/vsx).
Williams, P. M., van der Hucht, K. A., and Thé, P. S. 1987, Astron. Astrophys., 182, 91.
Williams, P. M., van der Hucht, K. A., Pollock, A. M. T., Florkowski, D. R., van der Woerd, H., and Wamstecker, W. M. 1990, Mon. Not. Roy. Astron. Soc., 243, 662.

Williams, P. M. 2014, Mon. Not. Roy. Astron. Soc., 445, 1253.

HD 46487 is Now a Classical Be Star

David G. Whelan
R. David Baker
Department of Physics, Austin College, 900 N. Grand Avenue, Sherman, TX 75090; dwhelan@austincollege.edu

Received March 13, 2017; revised May 15, 2017; accepted May 23, 2017

Abstract

We present the first observations of hydrogen line emission detected around the B-type star HD 46487, a well-studied star in the CoRoT field of view. The emission is only evident in the $\mathrm{H} \alpha$ line, for which the observed violet-red peak separation $\left(\Delta v_{\mathrm{p}}\right)$ is typical of a Be star with a circumstellar disk. The absence of dust emission from the infrared spectral energy distribution excludes the possibility of a very young star. The star's magnitude $(\mathrm{V}=5.079)$ and regular use in the literature for a variety of studies suggests that the line emission had a high probability of being found previously, had it been evident; since such was not the case, we believe that the Be phenomenon for HD 46487 has only very recently "turned on." We therefore recommend that this star be spectroscopically and photometrically monitored to track continued changes to its circumstellar morphology.

1. Introduction

Main sequence and giant B-type stars are often fast rotators. Classical Be stars are universally so, and most are believed to rotate at speeds near critical (Townsend et al. 2004). Unlike "normal" B-type stars, however, Be stars experience nonradial pulsational modes that eject matter from the surface, allowing them to form a circumstellar decretion disk at the star's equator (Rivinius et al. 2013). It is therefore interesting that stars have become Be stars after decades of appearing normal, or else have ceased to exhibit the Be phenomenon (Chojnowski et al. 2015, 2017). In fact, observations of the transition between normal B-type and Be star are becoming quite common; many examples exist in the more than decade-long archive of the Be Star Spectra (BeSS) Database. (BeSS may be accessed online at http://basebe.obspm.fr/basebe/Accueil.php?flag_lang=en) (Neiner et al. 2011). With the help of BeSS, data are being collected that illustrate the timescales on which disks build up and decrete, track violet-to-red emission peak separation (VR) variability due to one-armed global oscillations (Okazaki 1991), and variability due to outbursts.

But in spite of this growing collection of data, little is known about why they begin to exhibit emission when they do (Porter and Rivinius 2003). McSwain et al. (2009) showed that Be stars rotate faster on average than normal B-type stars, and their near-critical speeds make it easier for Be stars to lose mass to their surroundings. The difference in rotation rate for roughly 75% of Be stars is likely due to the transfer of angular momentum during binary interactions (McSwain and Gies 2005; deMink et al. 2013), and evidence suggests that such interactions are most common within the first 100 Myr of the star's life.

HD 46487, unlike many recently discovered Be stars, has been well-studied of late; partly this is because it is a bright source ($\mathrm{V}=5.079$) but also because it resides in the CoRoT field of view, which was targeted for exoplanet discoveries and asterseismology studies (Auvergne et al. 2009). At the time that the CoRoT field of view was being searched for Be stars, HD 46487 was not one, and so was not included in Neiner et al. (2005) or Frémat et al. (2006). However, other publications
from this time allow us to search for any evidence of extant or forming circumstellar matter in the past couple of decades. Its far-ultraviolet (FUV) spectrum exhibited no resonance lines in 2003, as we might have expected for a Be star (Jo et al. 2016; Rountree and Sonneborn 1991). It also showed no evidence of any photospheric pulsation (Lefever et al. 2010); photometric variability, due to either periodic variability or outbursts, is a common feature of Be stars (Labadie-Bartz et al. 2017; Rivinius 2013). Other more recent uses for HD 46487 in the literature, such as being used as a calibrator in interferometric observations (e.g. Ellerbroek et al. 2015), further suggest that the star was still normal until as late as 2013.

Several studies have provided us with fundamental physical parameters. HD 46487 was classified as a B5 Vn star in Abt et al. (1990), where the " n " designation suggests broad absorption lines. Its projected rotational speed, vsini where is the inclination angle, is likely between $285-300 \mathrm{~km} / \mathrm{s}$ (Abt et al. 2002; Huang et al. 2010). This high speed has lead to a bulging out of the equator, such that the equator has a substantially lower surface gravity than its poles $(\log (\mathrm{g})$ of 3.63 at the equator, compared to 3.95 at the poles (Huang et al. 2010)). There is no observed binary companion (Abt et al. 1990; Eggleton and Tokovinin 2008; Gullikson et al. 2016b). Recent spectra of HD 46487 are reported in Gullikson et al. (2016a, 2016b). Presented in these works there is a high-resolution ($R \sim 60,000$) spectrum in the wavelength range $3400-10000 \AA$ taken with the cross-dispersed echelle spectrograph (TS23) at the Harlan J. Smith 2.7-meter telescope (http://www.as.utexas.edu/mcdonald/facilities $/ 2.7 \mathrm{~m} /$ cs2.html) on 2014-01-11, as well as two near-infrared (1.45$2.5 \mu \mathrm{~m}$) spectra taken with IGRINS (Park et al. 2014) on the same telescope taken on 2014-10-16 and 2015-03-03. These three spectra together cover wavelengths for Balmer, Paschen, and Brackett series hydrogen lines, and would all have clearly exhibited that HD 46487 was an emission-line source, had it been evident.

We present the first known observations, taken in March 2017, of the onset of the Be phenomenon in the well-studied star HD 46487. We will describe our observations and data reduction in section 2 , present and analyze our spectra in section 3, briefly discuss the results in section 4 , and then conclude in section 5 .

2. Observations and data reduction

The Adams Observatory sits atop the IDEA Center science building at Austin College in Sherman, Texas. This facility provides opportunities for research, introductory and advanced astronomy classes, and public star-gazing events. Built by DFM Engineering in 2013, the $0.61-\mathrm{m} \mathrm{f} / 8$ Ritchey-Chrétien telescope is used primarily for spectroscopy, photometry, and imaging. Instruments are located at Cassegrain focus.

The spectrograph used for these observations is a longslit LhiresIII spectrograph designed for commercial sale by Shelyak Instruments. It is a modular spectrograph for which the dispersion grating can easily be switched. Collimation and focusing are performed by the same optic, a simple doublet with $\mathrm{f} / 6.67$ and a diameter of 30 mm .

The CCD camera being used is a Finger Lakes Instrumentation (FLI) Microline with a thermoelectric cooler that can reach $60^{\circ} \mathrm{C}$ below ambient. It contains a backilluminated e2V 42-10 CCD that is coated for enhanced broadband transmittance ($\sim 75-95 \%$ quantum efficiency from $\lambda=3800-7000 \AA$) and the array of 512×2048 pixels are each $13.5 \mu \mathrm{~m}$ square. Considering the demagnification of the spectrograph camera, the effective pixel size at the slit mask is $16 \mu \mathrm{~m}$. We therefore choose a $35 \mu \mathrm{~m}$ slit as the best resolution match (a $32 \mu \mathrm{~m}$ slit is not available for sale through Shelyak). The camera and spectrograph can be used to observe stars as faint as $\mathrm{V} \sim 10$.

Dispersion with the $2400 \mathrm{gr} / \mathrm{mm}$ dispersion grating is $0.168 \AA$ per pixel around $6500 \AA$, and $0.235 \AA$ per pixel around $4300 \AA$. The resultant resolutions vary with wavelength. Typically we see resolutions in the range $7,500 \lesssim \mathrm{R} \lesssim 9,500$ around $\mathrm{H} \gamma(4341 \AA)$ and $14,000 \lesssim \mathrm{R} \lesssim 20,000$ around $\mathrm{H} \alpha$ ($6563 \AA$). With the $1200 \mathrm{gr} / \mathrm{mm}$ grating, dispersion is $0.54 \AA$ per pixel in between $\sim 3800 \AA$ and $5000 \AA$, with the resolution varying between $3,000 \lesssim R \lesssim 4,500$.

A log of observational data, including exposure times and signal-to-noise ratios (SNR), is provided in Table 1. HD 46487 was first observed as a telluric standard for another project, so only a single spectrum was acquired on the first night. Flatfield, dark current, bias, and neon-argon lamp images are observed every night. The gain and read noise are computed using the bias and flatfield images; gain is $1.5 \mathrm{e}^{-} / \mathrm{ADU}$ and read noise is $13.1 \mathrm{e}^{-} /$pixel. Dark current and bias are removed from the science images, and they are then divided by the normalized flatfield. All data reduction and spectral extraction is performed in PYTHON using the author's own routines.

The reduced science images are collapsed in the wavelength direction, and the star's dispersion is fit with a Gaussian to determine an extraction center and width. The spectrum is then extracted between 2σ of the Gaussian's center, rounded out to

Table 1. HD 46487 observations data.

MJD	Dispersion $(\AA /$ pixel $)$	Wavelength Range (\AA)	Exposure Time (seconds)	Airmass	Average SNR
57826.098	0.168	$6380-6722$	1800	1.3	196
57827.054	0.168	$6380-6722$	1800	1.2	151
57827.103	0.235	$4182-4673$	1800	1.3	339
57827.141	0.543	$3820-4942$	900	1.4	304

the nearest pixel. The pixels on either side of the spectrum's extraction window are used to compute a local sky value that is then subtracted away from the star's spectrum, removing any background. Wavelength values are determined using known lines from the neon-argon lamp spectrum. The SNR is computed at every pixel using the CCD equation from Merline and Howell (1995), and are then propagated to compute errors at every wavelength value in the spectrum.

3. Analysis

3.1. Disk emission

The H α spectrum of HD 46487 is shown in Figure 1, as it was observed on the nights of 13 and 14 March 2017. There are noticeable differences between the two spectra. The telluric absorption features are substantially stronger in the second observation. The hydrogen emission is markedly more pronounced as well. Variations in emission strength on the order of days is not uncommon for Be stars, particularly during a phase of disk build-up (e.g. Rivinius et al. (2013) and references therein).

Figure 1. Two spectra observed on consecutive nights show $\mathrm{H} \alpha$ emission inside the photospheric absorption line. Various $\mathrm{Fe}_{\text {II }}$ lines are evident, as well as some telluric absorption lines. Modified Julian dates are shown.

The peak separation in the $\mathrm{H} \alpha$ emission is $\sim 7.9 \AA$, which translates to an orbital speed of $\sim 180 \mathrm{~km} / \mathrm{s}$. If we take $\mathrm{v} \sin \mathrm{i}=$ $290 \mathrm{~km} / \mathrm{s}$ as a rough average of the available literature values (see section 1), then according to Huang's Law (Huang 1972):

$$
\begin{equation*}
r_{d}=\left(\frac{2 \times v \sin i}{\Delta v_{p}}\right)^{2} \tag{1}
\end{equation*}
$$

where Δv_{p} is the emission peak separation, then the $\mathrm{H} \alpha$ lineemitting radius is $19 R_{*}$.

3.2. Spectral typing

The optical spectrum of HD 46487 in the wavelength range $3820-4950 \AA$ is shown in Figure 2 at two resolutions. The strengths of the Не г $\lambda 4009$ /4026 lines, the presence of Si II $\lambda 4128-4130$, its strength relative to $\mathrm{He}_{\text {I }} \lambda 4121,4144$, and the $\mathrm{He}_{\text {I }} \lambda 4471 / \mathrm{Mg}_{\text {II }} \lambda 4481$ ratio all confirm a spectral type of B5.

Figure 2. The violet-blue-green spectrum of HD 46487 taken on the night of 14 March 2017, with hydrogen, He i, and various metal absorption lines labeled. Spectrum (a) was obtained using the $1200 \mathrm{gr} / \mathrm{mm}$ dispersion grating, ($\mathrm{R} \sim 4,000$) while spectrum (b) was obtained using the $2400 \mathrm{gr} / \mathrm{mm} \mathrm{grating}(\mathrm{R} \sim 9,000)$.

Table 2. Equivalent width measurements.

Line Identification	Low-res a	Equivalent Widths $(m \&)$ Med-res b	$B^{2} V^{c}$	B5V c
$\mathrm{He}_{\mathrm{I}} \lambda 4009$	324 ± 19	-	613	217
$\mathrm{He}_{\mathrm{I}} \lambda 4026$	977 ± 20	-	1541	878
$\mathrm{He}_{\mathrm{I}} \lambda 4144$	524 ± 20	-	765	322
$\mathrm{C}_{\text {II }} \lambda 4267$	144 ± 13	145 ± 17	270	97
$\mathrm{He}_{\mathrm{I}} \lambda 4387$	612 ± 16	563 ± 23	950	378
$\mathrm{He}_{\mathrm{I}} \lambda 4471$	683 ± 33	742 ± 34	1442	667
$\mathrm{Mg}_{\text {II }} \lambda 4481$	193 ± 33	225 ± 30	198	272

Notes: a. Data taken with the $1200 \mathrm{gr} / \mathrm{mm}$ dispersion grating. b. Data taken with the $2400 \mathrm{gr} / \mathrm{mm}$ dispersion grating. c. Model values from Frémat et al. (2006).

The lines are very broad, suggesting that this is a main sequence star, and that the "nebular" designation is justified. We conclude that the spectral type based on visual inspection is B5 Vn, and that emission is not evident in the optical spectrum.

We measured the equivalent widths for the helium and metal absorption lines observed in the optical spectra. Results are given in Table 2, along with plane-parallel model predictions from Frémat et al. (2006) for comparison. Most notably, all of the line equivalent widths would suggest an earlier spectral type than what is visually observed.

3.3. The spectral energy distribution

The spectral energy distribution (SED) from ultraviolet to infrared is plotted against a B5V stellar template in Figure 3. The stellar template is taken from Castelli and Kurucz (2003). Data points were collected using VizieR and sources include Thompson et al. (1978) for the ultraviolet, Crawford et al. (1971), and Høg et al. (2000) for the optical, and the 2MASS survey (Skrutskie et al. 2006), the WISE Survey (Wright et al. 2010), the AKARI All-Sky Survey (Ishihara et al. 2010), and the IRAS survey (Neugebauer et al. 1984) for the infrared. The IRAS data points suffer from a very large point spread function (~ 5 arcmin) and it is no surprise that they contain emission from nearby interstellar gas; this is the source of the discrepancy between the IRAS and WISE data points. There is no evidence of dust emission around HD 46487, and out to $22 \mu \mathrm{~m}$, there is no substantial deviation from the stellar Rayleigh-Jeans tail.

Figure 3. The infrared SED for HD 46487 is plotted against a B5V stellar template for comparison. IRAS data points (diamonds) have a point spread function that includes nearby diffuse dust emission. Error bars are smaller than the symbol size.

4. Discussion

The $\mathrm{H} \alpha$ line-emitting radius is calculated to be $19 \mathrm{R}_{*}$, as discussed in section 3.1. This is consistent with the average $\mathrm{H} \alpha$ line-emitting radii for Be stars in Hanuschik (1988) and in Slettebak et al. (1992), which quote $\sim 20 \mathrm{R}_{*}$ and $\sim 19 \mathrm{R}_{*}$, respectively.

The spectral type determined upon visual inspection should be treated with skepticism. Fast-rotating stars bulge at the equator, which both increases their surface area and creates a gradient in surface temperature from equator to pole. As a result, fast-rotating stars have higher luminosities and lower average surface temperatures (i.e., later spectral types) than their slow-rotating counterparts (Gray and Corbally 2009). There is also the effect of rotation on the perceived depths of the absorption lines themselves. Fast rotation will broaden the helium and metal absorption lines, so that they appear shallower than they would for another star of the same spectral type. These broadening effects are, in some cases, asymmetric, as is the case with the $\mathrm{Mg}_{\text {II }} \lambda 4481$ line, which is intrinsically narrower than
the $\mathrm{He}_{\text {I }} \lambda 4471$ line. The $\mathrm{Mg}_{\text {II }} \lambda 4481 / \mathrm{He}_{\text {I }} \lambda 4471$ line ratio is one of several used in spectral typing for which intrinsic line width differences can be an issue. Since issues related to rapid rotation affect our perception of a star's intrinsic spectral type, some work has been done to spectral type fast-rotating stars (e.g. Garrison and Gray 1994). At this time, however, there exist no fast-rotating spectroscopic standards earlier than B7 in the literature that can be used for visual comparisons.

The spectral type inferred from equivalent width measurements can also be problematic for Be stars. Continuum emission originating within the disk can partially fill in the absorption lines in a process known as line damping. This means that a Be star's actual spectral type will be earlier than that measured. This is in addition to the effects of scattered light from within the spectrograph itself, which will also fill in absorption signatures. Since the equivalent width measurements in Table 2 already suggest that the spectral type is earlier than what is inferred from visual inspection, we may consider line damping and scattered light as exaggerating effects, and can confidently conclude that HD 46487 has an earlier spectral type (B 4 or B 3) than is determined from visual inspection.

Pre-main sequence stars such as Herbig Be stars exhibit hydrogen line emission due to a circumstellar disk just like classical Be stars (Herbig 1960). They should additionally possess a broad infrared excess due to circumstellar free-free emission (which is expected for classical Be stars as well; Gehrz et al. 1974) and thermally-radiating dust (Malfait et al. 1998). Indeed, McDonald et al. (2012) found 1 magnitude of infrared excess for HD 46487 out to $22 \mu \mathrm{~m}$. As illustrated in Figure 3, we cannot confirm such a large infrared excess, and what little infrared excess is seen is certainly not due to dust emission. HD 46487 is therefore not a pre-main sequence source, and what infrared excess exists is most likely due to circumstellar gaseous material and/or winds that would be responsible for free-free emission.

Due to the recent IGRINS and TS23 spectra of HD 46487 published in Gullikson et al. (2016b), we can state that HD 46487 was observed to be a normal main sequence B-type star as late as March 2015. All of the data used to compile the SED in Figure 3 was published earlier than 2013. It was additionally used in 2013 as a calibrator for interferometric observations in Bry (Ellerbroek et al. 2015), an unsatisfactory choice had it exhibited a substantial gaseous circumstellar disk. It therefore seems likely that the Be phenomenon became evident no earlier than March 2015.

5. Conclusion

HD 46487 ($\mathrm{V}=5.079$) makes an excellent target for small aperture telescopes. Now that it exhibits the Be phenomenon, we should expect it to vary like other Be stars: with periodic photometric variability, the occasional small outburst, and variations in its line emission on timescales anywhere from hours to years. There are three specific areas that will be most useful for continued studies of this source.

Spectroscopic observations of $H \alpha$. Such observations would be useful to track the changing line emission, whether it be due to small outbursts and resultant pockets of gas rotating within
the disk, or else long-scale global one-armed oscillations. Spectra submitted to BeSS (as we plan to do) would then be available to the entire community of Be star observers.

Photometric observations at optical wavelengths. Such observations may be useful for tracking periodicity, which is common in Be star atmospheres, and may also be useful for catching outbursts.

Near-infrared photometric observations. Most Be stars show an infrared excess due to free-free emission. Now that HD 46487 exhibits the Be phenomenon, we expect to see this change mostly to its near-infrared SED.

We recognize the need for collaboration on these observations. Interested parties are encouraged to contact the authors.

6. Acknowledgements

This work would not have been possible without the Adams Observatory at Austin College, made possible by the generosity of the John and Patricia Adams Foundation of Bedford, Texas. DGW would like to thank Michael Joner for his critical read of the manuscript before submission, and for the helpful feedback of the anonymous referee.

References

Abt, H. A., Gomez, A. E., and Levy, S. G. 1990, Astrophys. J. Suppl. Ser., 74, 551.
Abt, H. A., Levato, H., and Grosso, M. 2002, Astrophys. J., 573, 359.
Auvergne, M., et al. 2009, Astron. Astrophys., 506, 411.
Castelli, F., and Kurucz, R. L. 2003, in Modelling of Stellar Atmospheres, Poster Contributions., IAU Symp. 210, A20.
Chojnowski, S. D., et al. 2015, Astron. J., 149, 7.
Chojnowski, S. D., et al. 2017, Astron. J., 153, 174.
Crawford, D. L., Barnes, J. V., and Golson, J. C. 1971, Astron. $J ., 76,1058$.
de Mink, S. E., Langer, N., Izzard, R. G., Sana, H., and de Koter, A. 2013, Astrophys. J., 764, 166.
Eggleton, P. P., and Tokovinin, A. A. 2008, Mon. Not. Roy. Astron. Soc., 389, 869.
Ellerbroek, L. E., et al. 2015, Astron. Astrophys., 573, 77.
Frémat, Y., Neiner, C., Hubert, A.-M., Floquet, M., Zorec, J., Janot-Pacheco, E., and Renan de Medeiros, J. 2006, Astron. Astrophys., 451, 1053.
Garrison, R. F., and Gray, R. O. 1994, Astron. J., 107, 1556.
Gehrz, R. D., Hackwell, J. A., and Jones, T. W. 1974, Astrophys. J., 191, 675.

Gray, R. O., and Corbally, C. J. 2009, Stellar Spectral Classification, Princeton University Press, Princeton.
Gullikson, K., Kraus, A., and Dodson-Robinson, S. 2016a, Astron. J., 152, 40.
Gullikson, K., et al. 2016b, Astron. J., 151, 3.
Hanuschik, R. W. 1988, Astron. Astrophys., 190, 187.
Herbig, G. H. 1960, Astrophys. J., Suppl. Ser., 4, 337.
Høg, E., et al. 2000, Astron. Astrophys., 355, 27.
Huang, S.-S. 1972, Astrophys. J., 171, 549.
Huang, W., Gies, D. R., and McSwain, M. V. 2010, Astrophys. J., 722, 605.

Ishihara, D., et al. 2010, Astron. Astrophys., 514, 1.
Jo, Y.-S., Seon, K.-I., Min, K.-W., Choi, Y.-J., Lim, T.-H., Lim, Y.-M., Edelstein, J., and Han, W. 2016, Mon. Not. Roy. Astron. Soc., 456, 417.
Labadie-Bartz, J., et al. 2017, Astron. J., 153, 252.
Lefever, K., Puls, J., Morel, T., Aerta, C., Devin, L., and Briquet, M. 2010, Astron. Astrophys., 515, 74.
Malfait, K., Bogaert, E., and Waelkens, C. 1998, Astron. Astrophys., 331, 211.
McDonald, I., Zijlstra, A. A., and Boyer, M. L. 2012, Mon. Not. Roy. Astron. Soc., 427, 343.
McSwain, M. V., and Gies, D. R. 2005, Astrophys. J., Suppl. Ser., 161, 118.
McSwain, M. V., Huang, W., and Gies, D. R. 2009, Astrophys. J., 700, 1216.

Merline, W. J., and Howell, S. B. 1995, Exp. Astron., 6, 163.
Neiner, C., de Batz, B., Cochard, F., Floquet, M., Mekkas, A., and Desnoux, V. 2011, Astron. J., 142, 149.
Neiner, C., Hubert, A.-M., and Catala, C. 2005, Astrophys. J., Suppl. Ser., 156, 237.

Neugebauer, G., et al. 1984, Astrophys. J., 278, 1.
Okazaki, A. T. 1991, Publ. Astron. Soc. Japan, 43, 75.
Park, C., et al. 2014, Proc. SPIE, 9147, 1.
Porter, J. M., and Rivinius, T. 2003, Publ. Astron. Soc. Pacific, 115, 1153.
Rivinius, T. 2013, in Stellar Pulsations, Astrophys. Space Sci. Proc., 31, 253.
Rivinius, T., Carciofi, A. C., and Martayan, C. 2013, Ann. Rev. Astron. Astrophys., 21, 69.
Rountree, J., and Sonneborn, G. 1991, Astrophys. J., 369, 515.
Skrutskie, M. F., et al. 2006, Astron. J., 131, 1163.
Slettebak, A., Collins, G. W., and Truax, R. 1992, Astrophys. J., Suppl. Ser., 81, 335.

Thompson, G. I., Nandy, K., Jamar, C., Monfils, A., Houziaux, L., Carnochan, D. J., and Wilson, R. 1978, Catalogue of Stellar Ultraviolet Fluxes, Liege University, Liege, Belgium.
Townsend, R. H. D., Owocki, S. P., and Howarth, I. D. 2004, Mon. Not. Roy. Astron. Soc., 350, 189.
Wright, E. L., et al. 2010, Astron. J., 140, 1868.

BVRI Photometry of SN 2016coj in NGC 4125

Michael Richmond
School of Physics and Astronomy, Rochester Institute of Technology, Rochester, NY 14623,mwrsps@rit.edu

Brad Vietje
Northeast Kingdom Astronomy Foundation, PO Box 173, Peacham, VT 05862, brad@nkaf.org

Received April 12, 2017; revised June 6, 2017; accepted June 6, 2017

Abstract

We present BVRI photometry of supernova (SN) 2016coj in NGC 4125 from 9 days before to 57 days after its B-band maximum light. Our light curves and color curves suggest that this event belongs to the "normal" class of type Ia SNe, with a decline rate parameter $\Delta m_{15}(B)=1.32 \pm 0.10$, and that it suffers little extinction. Adopting a distance modulus to its host galaxy of $(m-\mathrm{M})=31.89 \mathrm{mag}$, we compute extinction-corrected peak absolute magnitudes of $M_{B}=-19.01, M_{V}=-19.05, M_{R}=-19.03$, and $M_{I}=-18.79$. The explosion occurred close enough to the nucleus of NGC 4125 to hinder the measurement of its brightness. We describe our methods to reduce the effect of such host-galaxy contamination, but it is clear that our latest values suffer from systematic bias.

1. Introduction

Supernova (SNe) of type Ia are thought to originate in close binary systems, consisting of either a single white dwarf and a main-sequence companion, or two white dwarfs. When one white dwarf accretes enough material to exceed the Chandrasekhar limit (Chandrasekhar 1931), either by longterm transfer from a main sequence companion, or by a violent merger with another white dwarf, a runaway thermonuclear reaction propagates through it, disrupting the entire white dwarf, heating the ejecta to hundreds of thousands of degrees and blowing it out into space at thousands of kilometers per second. The expanding cloud of hot gas radiates energy for several months, reaching absolute magnitudes in the optical of order -18 to -20 . Many (but not all) type Ia SNe exhibit similar properties, with a correlation between the shape of the light curve and the absolute magnitude at peak (Phillips 1993). When events are observed in sufficient detail, one can use the shape of the light curve to compute the absolute magnitude (Prieto et al. 2006; Guy et al. 2005), and so use these SNe as "standard-izable candles" to determine distances.

Supernova 2016coj in the galaxy NGC 4125, a peculiar elliptical of class E6 (de Vaucouleurs et al. 1991), was discovered by the Lick Observatory Supernova Search (Filippenko et al. 2001; Leaman et al. 2011) on UT 2016 May 28 (Zheng et al. 2016) and quickly identified as a type Ia explosion. Since its host galaxy is relatively close to our Milky Way, at a redshift of only $z=0.004523$ according to the NASA Extragalactic Database (NED; see https://ned.ipac.caltech.edu), this event promised to provide a wealth of high-precision information. However, since the supernova occurred not far from the galaxy's nucleus, disentangling its light from that of the surrounding stars turns out to be a difficult task.

In this paper, we describe photometry of SN 2016coj in the BVRI passbands acquired at two locations, starting on UT 2016 May 30 and ending UT 2016 Aug 4, an interval of 66 days. Section 2 describes our observational methods, the cleaning of the raw CCD images, and the techniques we used to extract instrumental magnitudes. We explain our photometric
calibration of the raw measurements onto the standard JohnsonCousins system in section 3. The light curves and color curves of the event are shown in section 4 ; we comment briefly on their properties and the effect of extinction along the line of sight. We present our conclusions in section 5. In an appendix, we discuss the difficulties of measuring the light of a point source immersed in a non-uniform background, and use simple simulations to estimate the nature of systematic biases that appear in our data.

2. Observations

We present herein data acquired at the RIT Observatory, near Rochester, New York, and at the Northern Skies Observatory (NSO), in Peacham, Vermont. We will describe below the procedures by which we acquired and reduced the images from each observatory in turn.

The RIT Observatory is located on the southeastern corner of the Rochester Institute of Technology campus, at longitude 77:39:53 West, latitude $+43: 04: 33$ North, and an altitude of 168 meters. Our Meade LX200 f/10 30-cm telescope provides a plate scale of $1.38^{\prime \prime}$ per pixel at the focus of our SBIG ST-9 camera, which has BVRI filters built to the Bessell prescription. When observing SN 2016coj, we acquired a series of 5 to 20 short exposures (exposure times 30 seconds each up to 2016 July $19=$ JD 2457588,120 seconds each after that date), discarding those with trailing or extinction by clouds. We acquired dark and flatfield images each night, creating master frames from the median of 10 individual images. Flatfields were based on images of the twilight sky, with the exception of UT June 13, when bad conditions forced us to use dome flats. After subtracting the master dark from each target frame and dividing it by the normalized master flatfield, we examined each resulting "clean" image by eye, discarding those with poor quality.

Before extracting instrumental magnitudes, we combined all the images in a particular passband using a median technique, in order to increase the signal-to-noise ratio and eliminate cosmic rays. Figure 1 shows an example of such a combined image, with labels indicating stars used for calibration.

Figure 1. R-band composite (16 images of 30 seconds each) of SN 2016coj from RIT, showing stars used to calibrate measurements. North is up, East to the left. The field of view is roughly 12 by 12 arcminutes.

Figure 2. The residual after rotation and subtraction of an image from RIT taken UT 2016 June 24. Positive residuals are bright and negative dark. North is up, East to the left; the galaxy's nucleus appears at the center. The field of view is roughly 7 by 7 arcminutes.

Figure 3. R-band composite (5 images of 45 seconds each) of SN 2016coj from NSO, showing stars used to calibrate measurements. North is up, East to the left. The field of view is roughly 30 by 30 arcminutes.

Figure 4. The residual after rotation and subtraction of an image from NSO taken UT 2016 June 26. Positive residuals are bright and negative dark. North is up, East to the left; the galaxy's nucleus appears at the center. The field of view is roughly 10 by 10 arcminutes.

Table 1. Photometry of comparison stars.

Star	R.A. (J2000)	Dec. (J2000)	B	V	R	I
	$h \mathrm{~m}$ s	- ' ${ }^{\text {c }}$				
B	120811.72	+65 1204.7	15.198 ± 0.086	14.133 ± 0.052	13.627 ± 0.116	13.155 ± 0.156
C	120901.20	+65 1403.5	13.317 ± 0.093	12.673 ± 0.058	12.316 ± 0.121	11.980 ± 0.161
J	120913.84	+65 1209.7	15.607 ± 0.109	14.956 ± 0.065	14.603 ± 0.136	14.271 ± 0.182
K	120900.39	+650751.9	16.573 ± 0.123	15.975 ± 0.082	15.547 ± 0.174	15.147 ± 0.231
P	120956.10	+65 1337.8	13.778 ± 0.095	13.113 ± 0.058	12.750 ± 0.116	12.409 ± 0.154
Q	120811.72	+65 1204.7	15.198 ± 0.086	14.133 ± 0.052	13.627 ± 0.116	13.155 ± 0.156
R	120643.72	+650630.3	15.392 ± 0.097	14.424 ± 0.058	13.911 ± 0.119	13.432 ± 0.158
S	120717.93	+650019.8	15.929 ± 0.108	15.246 ± 0.065	14.869 ± 0.128	14.515 ± 0.169

The Point Spread Function (PSF) of these combined images had a typical Full Width at Half Maximum (FWHM) of $3.5^{\prime \prime}$ to 4.1".

Since the supernova lies only about 12 arcseconds from the nucleus of its host galaxy (Zheng et al. 2016), simple aperture photometry will yield poor results. A systematic error can appear in such measurements due to imperfect background subtraction; the size of the error will grow as the supernova fades. A standard technique in such cases is to match each target image to a template of the same galaxy taken some time before or after the event, in which the supernova does not appear, and then to subtract the template from the target image. However, since we lacked template images, we adopted a technique which does not require them; the drawback is that its results are less accurate, and can still suffer from systematic effects. See the Appendix for a detailed explanation.

The basic idea of the method is to use the symmetry of the elliptical galaxy host to provide a pseudo-template. We identified the center of the host galaxy, rotated the image by 180° around this point, then subtracted the rotated version from the original. An example of the results, starting with the same image shown in Figure 1, is displayed in Figure 2; we have zoomed in to show details near the nucleus more clearly. The subtraction is not perfect: small positive and negative residuals remain near the center of the galaxy. However, the residuals decrease rapidly with radius, and near the position of the supernova they are typically much smaller than the peak of the supernova's light. Moreover, the background around and underneath the supernova is much more uniform than in the original image, removing the main source of error in the aperture photometry.

After creating these residual images, we performed standard aperture photometry of the SN and reference stars, using the XVista (Treffers and Richmond 1989) routines stars and рнот. We chose to measure light within circular apertures of a fixed radius, a bit larger than the usual FWHM: 4 pixels $=5.5^{\prime \prime}$. A local sky background was estimated for each star using an annulus with radii of $6.9^{\prime \prime}$ and $13.8^{\prime \prime}$.

The Northern Skies Observatory is located in Peacham, Vermont, at longitude 72:09:57 West, latitude $+44: 19: 30$ North, and an elevation of 384 meters above sea level. Images of SN 2016coj were acquired through a $43-\mathrm{cm} \mathrm{f} / 6.8$ corrected Dall-Kirkham astrograph made by PlaneWave Instruments. Light passes through Johnson-Cousins BVRI filters before reaching an Apogee Alta U16M CCD camera; we bin the chip 2 $\times 2$ to produce a plate scale of 1.26 " per pixel. We acquire new flatfield images for each observing session, but re-use bias and
dark frames for a month or so. We acquired 5 unguided images in each passband, using exposure times of 45 to 60 seconds each. After using MAximDL (Diffraction Ltd. 2012) to subtract master bias and master dark frames, and divide by a master flatfield frame, we combined the images in each passband using a median technique. These combined images typically had a FWHM ranging between $3.1^{\prime \prime}$ and $3.9^{\prime \prime}$, with most lying near the low end of this range. A sample composite R-band image is shown in Figure 3.

We applied the rotation technique described above to each combined image before extracting photometry using circular apertures of radius 3 pixels $=3.8^{\prime \prime}$. The local background was measured for each star using an annulus of radii $12.6^{\prime \prime}$ and $25.2^{\prime \prime}$. Figure 4 shows one such residual image from the NSO dataset.

3. Photometric calibration

In order to transform our instrumental measurements onto the standard Johnson-Cousins BVRI system, we used a set of local reference stars (Table 1) provided by the American Association of Variable Star Observers (AAVSO; https://www. aavso.org) in their sequence X18345FX. These stars are labelled in all figures showing the supernova and its surroundings. Given our relatively small fields of view and shallow limiting magnitudes, we did not select comparison stars on the basis of color, but accepted them all. The color range covered is relatively small: $0.598 \leq(B-V) \leq 1.065$. SN 2016coj has a color of $(B-V) \simeq 0.0$ near maximum light, and does not redden to match the comparison stars until about 15 days later. Of course, the spectrum of this type Ia SN is so distinct from that of the comparison stars that color corrections must be approximate in any case.

In order to convert the RIT measurements to the JohnsonCousins system, we analyzed images of the standard fields PG1633+009 and PG2213-006 (Landolt 1992) taken on five nights between June and August 2016. Comparing our instrumental values to the standard magnitudes, we determined transformation equations

$$
\begin{gather*}
B=b+0.2016(0134) \times(b-v)+Z_{B} \tag{1}\\
V=v-0.0920(0063) \times(v-r)+Z_{V} \tag{2}\\
R=r-0.1137(0058) \times(r-i)+Z_{R} \tag{3}\\
I=i-0.0174(0034) \times(r-i)+Z_{I} \tag{4}
\end{gather*}
$$

Table 2. RIT photometry of SN 2016coj.

$J D-2457530$	B	V	R	I	Comments
9.64	14.108 ± 0.040	13.960 ± 0.029	13.811 ± 0.067	13.866 ± 0.085	
10.61	13.816 ± 0.042	13.760 ± 0.021	13.657 ± 0.020	13.677 ± 0.040	
11.61	13.663 ± 0.067	13.556 ± 0.028	13.432 ± 0.104	13.484 ± 0.125	cirrus
19.60	13.231 ± 0.062	13.072 ± 0.038	13.061 ± 0.021	13.426 ± 0.073	
20.59	13.371 ± 0.090	13.109 ± 0.057	13.070 ± 0.038	13.503 ± 0.105	cirrus
21.58	13.244 ± 0.077	13.139 ± 0.049	13.161 ± 0.040	13.548 ± 0.049	light clouds
22.64	13.368 ± 0.058	13.196 ± 0.057	13.268 ± 0.077	13.822 ± 0.136	
23.59	13.415 ± 0.027	13.179 ± 0.029	13.212 ± 0.021	13.714 ± 0.059	
24.59	13.480 ± 0.049	13.232 ± 0.029	13.369 ± 0.046	13.837 ± 0.101	cirrus
27.60	13.884 ± 0.045	13.409 ± 0.027	13.544 ± 0.061	13.970 ± 0.065	
28.60	13.998 ± 0.050	13.440 ± 0.022	13.632 ± 0.059	13.984 ± 0.063	cirrus
29.61	13.975 ± 0.096	13.472 ± 0.030	13.543 ± 0.065	13.859 ± 0.088	bright moon
31.61	14.270 ± 0.072	13.586 ± 0.028	13.648 ± 0.079	13.719 ± 0.111	
32.59	14.436 ± 0.049	13.639 ± 0.023	13.648 ± 0.072	13.750 ± 0.085	
33.60	14.535 ± 0.088	13.650 ± 0.024	13.675 ± 0.057	13.723 ± 0.087	
36.59	15.166 ± 0.222	13.865 ± 0.048	13.656 ± 0.088	13.608 ± 0.085	clouds
37.59	15.129 ± 0.091	13.964 ± 0.052	13.670 ± 0.066	13.572 ± 0.099	fewer images
39.60	15.400 ± 0.115	14.061 ± 0.030	13.737 ± 0.069	13.516 ± 0.086	
40.60	15.370 ± 0.069	14.155 ± 0.043	13.795 ± 0.061	13.418 ± 0.104	
42.60	15.678 ± 0.119	14.349 ± 0.044	13.948 ± 0.072	13.593 ± 0.086	
43.60	15.722 ± 0.078	14.421 ± 0.040	14.034 ± 0.081	13.705 ± 0.095	
45.60	15.938 ± 0.079	14.586 ± 0.044	14.248 ± 0.078	13.840 ± 0.082	haze
50.60	16.026 ± 0.117	14.822 ± 0.069	14.462 ± 0.093	14.372 ± 0.106	cirrus
51.60	15.844 ± 0.189	14.897 ± 0.049	14.578 ± 0.085	14.272 ± 0.113	cirrus
53.60	16.265 ± 0.107	14.926 ± 0.062	14.654 ± 0.081	14.414 ± 0.107	haze, old flats
56.60	16.193 ± 0.117	15.100 ± 0.055	14.799 ± 0.082	14.596 ± 0.098	
58.60	16.002 ± 0.113	15.111 ± 0.058	14.796 ± 0.086	14.609 ± 0.113	
59.60	16.202 ± 0.102	15.069 ± 0.047	14.815 ± 0.064	14.623 ± 0.084	start longer exp
62.60	-	15.188 ± 0.035	14.915 ± 0.084	14.686 ± 0.110	
63.61	-	15.222 ± 0.063	15.032 ± 0.090	14.824 ± 0.124	cirrus
65.60	-	15.257 ± 0.038	15.020 ± 0.062	14.840 ± 0.082	
66.60	-	15.289 ± 0.049	15.061 ± 0.082	14.839 ± 0.125	cirrus
69.62	-	15.374 ± 0.041	15.176 ± 0.087	14.928 ± 0.083	light clouds
72.60	-	15.433 ± 0.036	15.211 ± 0.083	14.949 ± 0.089	
73.59	-	15.451 ± 0.039	15.235 ± 0.069	15.118 ± 0.090	
75.61	-	15.503 ± 0.092	15.421 ± 0.108	15.054 ± 0.126	light clouds

In the equations above, lower-case symbols represent instrumental magnitudes, upper-case symbols Johnson-Cousins magnitudes, terms in parentheses the uncertainties in each coefficient, and Z the zeropoint in each band. The relatively small field of view of the RIT images allowed us to use only a few stars for calibration: B, C, J, and, in some cases, K.

In mid-June 2016, we noticed that images in the B-band from RIT had a low signal-to-noise ratio, even after coaddition; this is largely a function of the relatively low sensitivity of our camera's sensor at short wavelengths. The B-band measurements showed a large scatter from night to night, making real trends in the light curve hard to discern. Therefore, after UT 2016 June 20, we stopped taking images at RIT in the B-band.

We present our calibrated measurements of SN 2016coj made at RIT in Table 2. The first column shows the mean Julian Date of all the exposures taken during each night; we have subtracted the arbitrary constant 2457530 from all Julian Dates for convenience. The uncertainties listed in Table 2 incorporate the uncertainties in instrumental magnitudes and in the offset to shift the instrumental values to the standard scale, added in quadrature.

We determined linear transformations between the instrumental NSO measurements and the standard scale using images of the open cluster M67 and photometry provided by the AAVSO. The transformation equations for NSO were

$$
\begin{gather*}
B=b-0.164(0.033) \times(b-v)+Z_{B} \tag{5}\\
V=v-0.109(0.023) \times(b-v)+Z_{V} \tag{6}\\
V=v-0.197(0.050) \times(v-r)+Z_{V} \tag{7}\\
R=r-0.205(0.052) \times(r-i)+Z_{R} \tag{8}\\
I=i-0.238(0.073) \times(r-i)+Z_{I} \tag{9}
\end{gather*}
$$

In the equations above, lower-case symbols represent instrumental magnitudes, upper-case symbols Johnson-Cousins magnitudes, terms in parentheses the uncertainties in each coefficient, and Z the zeropoint in each band. We list two equations for the V-band; on nights when we acquired R images, we used the $(v-r)$ equation, but on nights when we measured only B and V, we used the $(b-v)$ version.

Table 3 lists our calibrated measurements of SN 2016coj made at Northern Skies Observatory.

4. Light curves

In order to determine the time and magnitude at peak brightness, we fit polynomials of order 3 to the light curves near maximum, using data from the period $0<(\mathrm{JD}-2457530)$

Table 3. NSO photometry of SN 2016coj.

$J D-2457530$	B	V	R	I
20.64	13.307 ± 0.023	13.073 ± 0.027	13.121 ± 0.037	13.570 ± 0.057
25.64	13.606 ± 0.056	13.242 ± 0.015		-
33.65	14.565 ± 0.038	13.791 ± 0.017	13.773 ± 0.035	13.967 ± 0.056
34.63	14.682 ± 0.025	13.845 ± 0.026	13.769 ± 0.034	13.824 ± 0.047
35.64	14.785 ± 0.058	13.807 ± 0.032	-	-
39.61	15.195 ± 0.067	14.037 ± 0.032	-	-
42.61	15.487 ± 0.034	14.369 ± 0.028	14.000 ± 0.036	13.687 ± 0.065
43.66	15.626 ± 0.047	14.461 ± 0.030	14.110 ± 0.039	13.729 ± 0.058
45.59	15.729 ± 0.043	14.632 ± 0.031	-	-
73.59	16.423 ± 0.058	15.590 ± 0.038	15.456 ± 0.042	15.535 ± 0.075

Table 4. Apparent magnitudes at maximum light.

Passband	JD-2457530	Magnitude
B	18.1 ± 0.4	13.16 ± 0.07
V	18.7 ± 0.2	13.06 ± 0.01
R	18.0 ± 0.4	13.04 ± 0.03
I	16.2 ± 2.9	13.23 ± 0.10
I (sec)	39.0 ± 0.7	13.50 ± 0.05

<30 in each passband, weighting the fits by the uncertainties in each measurement. We list the results in Table 4. For the secondary maximum in I-band, we found that polynomials of order 2 provided better fits; we averaged the results from several intervals during during the period $30<(\mathrm{JD}-2457530)<50$ to produce the value in the table. Note that the I-band magnitude at its primary maximum is particularly uncertain, as it falls farther within the gap in our measurements than the peaks in other passbands.

Using a second-order polynomial to interpolate in the B-band observations exactly 15 days after the time of B-band maximum light, we compute $\Delta_{15}(B)=1.32 \pm 0.10$. By this measure, SN 2016coj lies in the range of "normal" type Ia SNe, such as 1980N (Hamuy et al. 1991), 1989B (Wells et al. 1994), 1994D (Richmond et al. 1995), 2003du (Stanishev et al. 2007), and 2011fe (Richmond and Smith 2012; Parrent et al. 2012). The secondary peak in I-band, which lies 22.8 ± 1.0 days after and 0.27 ± 0.07 magnitude below the primary peak, is also typical of "normal" type Ia events.

Our values of the apparent magnitude at B-band maximum light and the $\Delta_{15}(B)$ parameter agree with those measured by Zheng et al. (2016). Those authors also provide spectroscopic evidence to support a "normal" classification for SN 2016coj.

In order to compute absolute magnitudes and intrinsic colors for SN 2016coj, we must remove the extinction due to any intervening material. Fortunately, there appears to be very little dust in its direction. Our own Galaxy's contribution is small: Schlegel et al. (1998) use infrared maps of the Milky Way to estimate $E(B-V)_{\mathrm{MW}}=0.017$ in the direction of NGC 4125. Zheng et al. (2016) examine high-resolution spectra of SN 2016coj to look for absorption lines caused by interstellar material in the host galaxy. Finding none, they employ several methods to place upper limits on the reddening of $E(B-V)_{\text {host }} \lesssim 0.05$ or $E(B-V)_{\text {host }} \lesssim 0.09$. We will adopt a host value of $\mathrm{E}(B-V)_{\text {host }}=0.05$ for the color curves we present below, yielding a total reddening of $E(B-V)_{\mathrm{tot}}=0.067$. Following the conversions from reddening

Figure 5. Light curves of SN 2016coj in BVRI. The data for each passband have been offset vertically for clarity. Small symbols represent measurements from RIT, large symbols those from NSO; uncertainties in the latter are smaller than the symbols.

Figure 6. (B-V) color evolution of SN 2016coj, after correcting for extinction.
to extinction given in Schlafly and Finkbeiner (2011), we derive the extinction to SN 2016coj to be $A_{B}=0.24, A_{V}=0.18, A_{R}=$ 0.15 , and $A_{I}=0.10$.

After removing this extinction from each passband, we calculate the evolution of the event in each color; see Figure 6 for $(B-V)$, Figure 7 for $(V-R)$, and Figure 8 for $(R-I)$. The $(B-V)$ color shows a value of zero at maximum light, typical for a normal type Ia. In the same figure, we have drawn a line which

Figure 7. (V-R) color evolution of SN 2016coj, after correcting for extinction.

Figure 8. (R-I) color evolution of SN 2016coj, after correcting for extinction.
represents the late-time $(B-V)$ evolution of a set of normal type Ia SNe with little or no extinction (Lira 1995; Phillips et al. 1999). Although our measurements are sparse and noisy at late times, due to the low signal in the B band, they suggest that SN 2016coj followed the same evolution as other normal events. In Figure 7, we see that SN 2016coj reaches a minimum $(V-R)$ color about 10 days after B-band maximum, then increases to a maximum $(V-R)=0.35$. The time of minimum is a few days earlier in $(R-I)$, which then rises to a maximum of $(R-I)=0.35$. All these properties are similar to those in the color curves of the normal SNe Ia 1994D (Richmond et al. 1995), 2003du (Stanishev et al. 2007), 2009an (Sahu et al. 2013), and 2011fe (Richmond and Smith 2012). The only significant difference in the late-time behavior of SN 2016coj is in $(R-I)$, which appears to have a relatively constant value of $(R-I) \sim 0.2$. However, we believe that this color in particular suffers from a systematic bias in the RIT I-band measurements (see the Appendix); note the position of the single late-time NSO datum, at a negative color more typical of normal SNe.

5. Absolute magnitudes

What was the absolute magnitude of SN 2016coj? In order to convert our apparent magnitudes to the absolute scale, we

Table 5. Absolute magnitudes of SN 2016coj at maximum light, corrected for extinction.

Passband$E(B-V)$ $=0$ in host	$E(B-V)$ $=0.05$ in host	based on $\Delta m_{15}(B)^{a}$	
B	-18.79 ± 0.26	-18.97 ± 0.26	-19.19 ± 0.10
V	-18.88 ± 0.26	-19.01 ± 0.26	-19.12 ± 0.09
R	-18.89 ± 0.26	-18.99 ± 0.26	-19.14 ± 0.07
I	-18.68 ± 0.27	-18.76 ± 0.27	-18.87 ± 0.08
I (sec)	-18.41 ± 0.26	-18.49 ± 0.26	-
a. Using the relationship from Prieto et al. (2006).			

need to account for extinction and the distance to the host galaxy (Table 5). As mentioned earlier, Zheng et al. (2016) place only upper limits on the extinction due to material in the host galaxy. In the discussion which follows, we will compute two values of absolute magnitude, one assuming no extinction in the host galaxy, the other corresponding to the upper limit of $E(B-V)=$ 0.05 derived in Zheng et al. (2016). The distance to NGC 4125 has been measured a number of times, but none are very recent. We will adopt the measurement based on Surface Brightness Fluctuations (SBF) by Tonry et al. (2001) of $(m-\mathrm{M})=31.89$ ± 0.25.

A connection between the absolute magnitude of a type Ia SN and its rate of decline after maximum was first noted by Phillips (1993) and has since been refined by a number of authors (Hamuy et al. 1996; Riess et al. 1996; Perlmutter et al. 1997). We choose the relationships derived by Prieto et al. (2006) which are based on the fading in B-band in the first 15 days after maximum light, the $\Delta m_{15}(B)$ parameter. In the case of SN 2016coj, we measure $\Delta m_{15}(B)=1.32 \pm 0.10$. Inserting that into the equations in Table 3 of Prieto et al. (2006) for events in environments with low extinction, we derive the absolute magnitudes shown in the rightmost column of Table 3. With the exception of the B-band measurement assuming no host extinction, all measurements agree with the predictions of the decline-rate method, supporting further the classification of SN 2016coj as normal. The slight improvement offered by assuming a small host extinction provides weak evidence that it may be close to the upper limits derived by Zheng et al. (2016).

6. Conclusion

Our measurements of SN 2016coj show that its photometric behavior at early times (within 60 days of maximum light) follows that of "normal" type Ia SNe. We compute a decline parameter of $\Delta m_{15}(B)=1.32 \pm 0.10$ magnitude, placing it in the middle of the distribution of normal events. Adopting a distance modulus to NGC 4125 of $(m-\mathrm{M})=31.89$ and correcting for a total of $E(B-V)=0.067$ of extinction, we derive absolute magnitudes of $M_{B}=-19.01, M_{V}=-19.05, M_{R}=-19.03$, and $M_{I}=-18.79$.

We have shown that correcting for contamination of SN measurements by the background light of the host galaxy is a difficult issue for this event. While our measurements at early times-upon which the above conclusions are based-are reliable, those at late times must be treated with caution. The simple procedure we used for this dataset does not require
template images of the host galaxy alone, but can leave a systematic error which grows as the target object fades.

7. Acknowledgements

We thank the staff at AAVSO for their finding charts, sequences of comparison stars, and endless support of observers. MWR is grateful for the continued support of the RIT Observatory by RIT and its College of Science. BV thanks the Northeast Kingdom Astronomy Foundation for allowing him to use their facility. The Lick Observatory Supernova Search noticed this event and quickly alerted the rest of the community, permitting us to begin our study while the supernova was still on the rise. This research has made use of the "Aladin Sky Atlas" and SIMBAD database (Wenger et al. 2000), developed and operated at the CDS, Strasbourg Observatory, France, We have also made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. This paper (and many others) has made use of NASA's Astrophysics Data System. Facility: AAVSO.

References

Chandrasekhar, S. 1931, Astrophys. J., 74, 81.
de Vaucouleurs, G., de Vaucouleurs, A., Corwin, H. G., Jr., Buta, R. J., Paturel, G., and Fouqué, P. 1991, Third Reference Catalog of Bright Galaxies, Springer, New York.
Diffraction Limited. 2012, maximpl image processing software (http://www.cyanogen.com).
Filippenko, A. V., Li, W. D., Treffers, R. R., and Modjaz, M. 2001, in Small Telescope Astronomy on Global Scales, eds. B. Paczynski, W.-P. Chen, and C. Lemme, ASP Conf. Ser. 246, Astronomical Society of the Pacific, San Francisco, 121.
Guy, J., Astier, P., Nobili, S., Regnault, N., and Pain, R. 2005, Astron. Astrophys., 443, 781.
Hamuy, M., Phillips, M. M., Maza, J., Wischnjewsky, M., Uomoto, A., Landolt, A. U., and Khatwani, R. 1991, Astron. J., 102, 208.
Hamuy, M., Phillips, M. M., Suntzeff, N. B., Schommer, R. A., Maza, J., and Aviles, R. 1996, Astron. J., 112, 2391.
Landolt, A. U. 1992, Astron. J., 104, 340.
Leaman, J., Li, W., Chornock, R., and Filippenko, A. V. 2011, Mon. Not. Roy. Astron. Soc., 412, 1419.
Lira, P. 1995, Master's thesis, Univ. Chile.
Parrent, J. T., et al. 2012, Astrophys. J., Lett., 752, L26.
Perlmutter, S., et al. 1997, Astrophys. J., 483, 565.
Phillips, M. M. 1993, Astrophys. J., Lett., 413, L105.
Phillips, M. M., Lira, P., Suntzeff, N. B., Schommer, R. A., Hamuy, M., and Maza, J. 1999, Astron. J., 118, 1776.
Prieto, J. L., Rest, A., and Suntzeff, N. B. 2006, Astrophys. J., 647, 501.
Richmond, M. W., et al. 1995, Astron. J., 109, 2121.
Richmond, M. W., and Smith, H. A. 2012, J. Amer. Assoc. Var. Star Obs., 40, 872.
Riess, A. G., Press, W. H., and Kirshner, R. P. 1996, Astrophys. J., 473, 88.

Sahu, D. K., Anupama, G. C., and Anto, P. 2013, Mon. Not. Roy. Astron. Soc., 430, 869.
Schlafly, E. F., and Finkbeiner, D. P. 2011, Astrophys. J., 737, 103.
Schlegel, D. J., Finkbeiner, D. P., and Davis, M. 1998, Astrophys J., 500, 525.
Stanishev, V. et al. 2007, Astron. Astrophys., 469, 645.
Tonry, J. L., Dressler, A., Blakeslee, J. P., Ajhar, E. A., Fletcher, A. B., Luppino, G. A., Metzger, M. R., and Moore, C. B. 2001, Astrophys. J., 546, 681.
Treffers, R. R., and Richmond, M. W. 1989, Publ. Astron. Soc. Pacific, 101, 725.
Wells, L. A., et al. 1994, Astron. J., 108, 2233.
Wenger, M., et al. 2000, Astron. Astrophys., Suppl. Ser., 143, 9.
Zheng, W., Yuk, H., Manzano-King, C., Canalizo, G., Sexton, R., Barth, A., Shivvers, I., and Filippenko, A. V. 2016, Astron. Telegram, No. 9095, 1.

Appendix: Bias in photometry

The location of SN 2016coj in its host galaxy presents the observer with good news and bad news. The good news is that NGC 4125 is an elliptical galaxy, and therefore likely contains relatively little gas and dust, as the spectroscopic measurements of Zheng et al. (2016) confirm. It is therefore not necessary to make large corrections for extinction. But the bad news is that the supernova is close enough to the bright core of its host, offset by only 5.0" east and $10.8^{\prime \prime}$ north (Zheng et al. 2016), that the light of the nucleus and the surrounding stars provides a significant background to measurements of the SN. Moreover, at this location, the light of the galaxy has a strong radial gradient, making it very difficult to subtract its contribution accurately.

Since other observers may encounter similar situations, we describe in some detail below our investigation of the likely systematic errors that can arise when one attempts to perform photometry on such images.

It became clear to us that simple aperture photometry methods would yield poor results in this case. Since we did not have template images of the galaxy to use as references for subtraction in the standard manner, we settled upon a method which would provide better (but not perfect) results: making a copy of each image, rotating the copy by 180° around the center of the galaxy, then subtracting the copy from the original. As shown in Figure 2, the resulting residual image has a background near the location of the supernova which is both much lower, and much more uniform, than the original image. We used these residual images to derive the measurements presented in this paper.

However, we suspected that there remained a sometimes significant systematic error in the photometry produced by this method, for two reasons. First, when comparing the decline of SN 2016coj against that of other type Ia SNe, such as SN 2011fe, we noticed that this event faded less quickly at late times-by an amount which appeared to grow with time. Second, we noticed a difference between measurements from our two sites: measurements from NSO, which typically have a smaller PSF and higher signal-to-noise than those from RIT, showed the SN as slightly fainter, and this difference also grew with time.

Could there be a reason why measurements of faint point sources immersed in a noisy (and possibly non-uniform) background should show a systematic error? Our technique of identifying and measuring both reference stars and the supernova in images was a simple one: we searched through each image independently to identify peaks above the local sky background, measured their properties, and kept as "good" sources those which had shapes consistent with the expected PSF. We used the pixels around each of these sources to compute its center, placed a circular aperture at this position, and integrated the light within the aperture; finally, we subtracted the contribution from the local background light within the aperture.

The important feature of this standard method is that the position of the aperture used to measure the SN (and reference stars) is not fixed in any way: it may be influenced independently by noise in each image, especially when the source is faint and the noise is high. A better technique, one which is natural when using a template, is to align images, co-add them to improve signal-to-noise, and measure relative positions for the SN and several reference stars; then, in each individual image, measure the position of bright reference stars and use them to infer the position of the SN using a fixed offset, rather than computing it based on the possibly noisy data at its location in each image. The method we employed is likely to shift the center of the SN's aperture slightly to follow positive noise peaks, which could yield measurements slightly higher than they ought to be.

In short, we suspect that our measurements, especially those made at RIT, contain a systematic positive bias: the SN appears brighter than it actually is, by an amount which increases as the SN fades.

To test this hypothesis, we created a set of simulated images with properties similar to those acquired at RIT, and subjected them to exactly the same measurement methods as we used on our actual images. We started with a simplified situation: a set of reference stars of identical brightness on a uniform background, and a single "supernova" immersed in a "square galaxy" region of uniform higher intensity; see Figure 9. The stars are modeled as gaussians of FWHM 3.0 pixels, matching the typical seeing at RIT, and the gain in the image is set to 2.2 electrons per count, matching the properties of the SBIG ST-9E camera. The brightness of the "square galaxy" is set to 620 counts, typical for the region near SN 2016coj in R-band images. Note that the stars are placed at intervals with small random variations, ensuring that they appear at a wide range of sub-pixel locations. We ran a number of instances of each simulation, shifting both the reference stars and the "supernova" by small random sub-pixel positions each time.

In this simplified situation, we chose as the center of rotation the geometric center of the image. After making a copy and rotating it around this center by 180°, we subtracted the copy from the original, leaving both reference stars and "supernova" in a near-zero background; but the pixels surrounding the supernova might be noisier than those surrounding the reference stars. As a sanity check that our software was not introducing errors of its own, we ran simulations in which no photon noise was added to the images: the background value was some fixed value in all pixels, and the model gaussian for each star was similarly exact. Over a series of trials, the reference stars and
"supernova" were all set to the same input brightness, increasing gradually throughout the trials until their centers reached a value of 30,000 counts (similar to the limit of linearity on our camera). We would expect the stars and "supernova" all to have exactly the same magnitude in this noiseless simulation. The magenta symbols in Figure 10 show that the difference between the average reference star magnitude, and the "supernova" magnitude, is indeed zero under these conditions.

However, when we add photon noise to our simulations, we find some differences between the magnitude of the reference stars and the "supernova." We ran simulations with two background levels, 100 and 1,000 counts per pixel, roughly bracketing the range of sky levels in real RIT images (which varies due to clouds, haze, and the aspect of the Moon). Consider first the red asterisk symbols, which show the results under low sky conditions: when the SN and stars are bright, there is no significant difference in their measured magnitudes. But when the stars are faint, noise in the sky background and in their own signal leads both to increased scatter and to discrepancy between the average value of the reference stars and that of the "supernova"; the SN tends to be measured as brighter than the reference stars. The amplitude of the difference grows to roughly 0.1 magnitude by the time the stars are too faint to detect reliably. The blue circular symbols, corresponding to higher and so noisier background sky levels, show the same trend, but at an increased amplitude.

We conclude that point sources simply immersed in a higher background of light will suffer from a systematic bias under our measurement procedure, appearing brighter than they ought to be. However, the situation of SN 2016coj is even worse: not only is it in a region of higher background level than the comparison stars, but it sits in a strong spatial gradient. What effect will this additional complication have on our measurements?

We performed a very simple test by creating a toy model of our real images. We created an artificial galaxy by superposing a central gaussian (FWHM $=3.0$ pixels) and an extended and flattened component (FWHM $=8.0$ pixels, convolved with a kernel of FWHM $=6$ along rows and $\mathrm{FWHM}=12$ along columns), scaling the result so that it resembled the appearance of NGC 4125 in our R-band images. We then placed the "supernova" at an offset from the galaxy similar to its actual offset. Both the galaxy and the "supernova" were shifted in position by small random sub-pixel amounts in each realization of our simulations. Figure 11 shows an example of these artificial images, one in which the reference stars and SN are all at the maximum brightness.

We then carried out a series of instances, changing the brightness of the stellar objects over a wide range; at each level of brightness, we ran ten realizations, varying the positions of each source at the sub-pixel level and generating different random values of photon noise. For each realization, we carried out exactly the same measurement procedure as we used for the real images:

- a copy of the image was displayed on a computer screen
- the user moved a cursor to the center of the galaxy, pressed

Figure 9. Simulated image with 19 reference stars in a low background and a "supernova" immersed in a "square galaxy."

Figure 10. Results of photometry after rotation and subtraction of the simulated images with a "square galaxy."
a key to initiate a calculation of the local centroid and display a radial profile, made adjustments to initial position until satisfied that the center had been found correctly

- a copy of the image was rotated around this position
- the copy was subtracted from the original image
- point sources in the residual image were automatically found and measured via aperture photometry

An example of one residual image is shown in Figure 12. There is clearly imperfect subtraction of the galaxy's light at its very center, as is seen in most of the real images after this procedure.

Figure 11. Simulated image with 19 reference stars in a low background and a "supernova" placed close to an artificial galaxy.

Figure 12. Simulated image with artificial galaxy after rotation and subtraction.
The results of photometry on these images are display in Figure 13. In this case, we fixed the brightness of the overall sky background to 100 counts for all realizations, so it represents the optimistic end of the spectrum of real conditions. The general trend is similar to that in the "square galaxy" simulations: measurements of the SN appear brighter than those of the reference stars, by an amount which increases as the SN fades. However, there are important differences: first, this systematic difference appears even in the absence of photon noise; this indicates that the software used to perform the image analysis
(xvista; Treffers and Richmond 1989) is unable to compute the center of the galaxy accurately enough, or perform the image rotation accurately enough, or both. Second, note that the amplitude of the systematic difference is much larger than in the "square galaxy" simulations: the SN can appear about 1.0 magnitude brighter it ought to be, instead of just 0.1 magnitude.

In order to reduce these systematic errors, one must improve the method of subtracting the background contribution to the total light within the photometric aperture. Given the large FWHM of our images, we could not decrease the size of the photometric aperture significantly; given the location of the SN , close to the galaxy's nucleus, increasing the size of the background annulus would make matters worse, and, given the large FWHM, decreasing the size of the background annulus is not possible. Rather than choosing some constant value per pixel for the background contribution, one could do better by making a model of the galaxy's light within the photometric aperture. We will investigate this technique in the future; it would require a substantial effort to modify the existing software. The difficulty of proper background subtraction is, of course, the reason that many astronomers adopt the "template subtraction" method.

Now, in light of this information, let us review the light curves shown in Figure 5. When the SN is bright, measurements from RIT and NSO agree well; but as the SN fades, an offset between the two datasets appears, with the NSO measurements slightly fainter. The offset is largest in the I-band and smallest in the B-band; we ascribe this trend with wavelength to the color of the galaxy's light. The starlight of NGC 4125 is more prominent at long wavelengths, making the background at the location of

Figure 13. Results of photometry after rotation and subtraction of the simulated images with a realistic galaxy model.

SN 2016coj brightest (relative to the SN) in the I-band. Since the NSO data have both a smaller PSF and a higher signal-to-noise ratio, they suffer from less contamination by the galaxy's light.

At early times, the SN was bright enough that any systematic bias was at most comparable to the random uncertainties in each measurement; but that is certainly not true for the late times. We recommend that readers use with caution the latest measurements presented here. We suggest that greater weight be given to the NSO values at late times; it might be profitable to "warp" the RIT measurements at late times to match the final NSO magnitudes.

Using Unfiltered Images to Perform Standard Filter Band Photometry

Joe Garlitz

1155 Harford Street, Elgin, OR 97827; garlitzj@eoni.com
Received May 24, 2016; revised July 7, October 24, 2016, February 17, 2017; accepted February 20, 2017

Abstract

This paper demonstrates that raw instrumental magnitudes of stars measured from a single unfiltered CCD image can be transformed into standard passband magnitudes. Star fields that have good catalogued photometric magnitudes can be used as a reference to transform unfiltered instrumental magnitudes into a standard system. To demonstrate this, the AAVSO (VSP) M-67 catalogued stars are used. It is shown that, within certain constraints, the standard $\mathrm{B}, \mathrm{V}, \mathrm{Rc}$, and Ic magnitudes can be accurately determined from unfiltered instrumental magnitudes. For well behaved, well calibrated stars, the transformations to standard magnitudes can be done within a standard deviation of better than 0.021 magnitude. The paper further presents a simple spreadsheet tool to automatically derive the "standard" magnitudes from the raw instrumental magnitudes. This greatly simplifies the task of calculating transformation coefficients, and makes it possible to calibrate a CCD imaging system on an image-by-image basis.

1. Introduction

A variety of differential photometric measurements are made by amateur astronomers, such as: light curves of variable stars, the rotational periods of asteroids, and transit timing of exoplanets. Many projects, however, require photometric measurements referenced to "standard" filter passbands. Due to the added work required and the use of filters that reduce the signal of the image, many amateurs do not attempt to make such measurements.

With the advent of all-sky catalogues such as the Guide Star Catalog (GSC; Space Telescope Science Institute 2001), AAVSO Photometric All-Sky Survey (APASS; Henden et al. 2015), Carlsberg Meridian Catalogue 14 (CMC14; Copenhagen University Observatory 2006), and others, nearly any image field will contain a number of cataloged stars having standard magnitudes. As high quality all-sky photometric catalogues become available, single-image transformation of instrumental magnitudes to "standard" systems can become a common practice.

2. Previous work

Henden (2000) presented an experiment using 64 calibrated stars in M67 to determine the practicality of making standard photometric measurements from unfiltered CCD images. Henden has shown that unfiltered images can be used to make some standard photometric measurements. The color response of the camera is determined and used to transform unfiltered instrumental magnitudes to standard magnitudes. The accuracy of the transformation is dependent primarily on obtaining the photometric response of the imaging system and the color index of the target star. He determined the V and R color coefficients for six different CCD sensors. Using these he presented a sample transformation of the unfiltered instrumental magnitude of a star to the standard V magnitude. He demonstrated that by determining the color response of the CCD and the color index of the subject star, the unfiltered instrumental magnitude transformed to the known standard V magnitude of the star within 0.06 magnitude.

Gary (2009) has developed a novel method to do all-sky
photometry using unfiltered images. Predetermined zero-point adjustments for his imaging system and the cataloged 2MASS J and K magnitudes of the subject star are used to derive proper transform coefficients to calculate V, R, and r^{\prime} standard magnitudes.

Dymock and Miles (2009) described a method of determining the V magnitude of an asteroid using differential photometry with the magnitudes of comparison stars selected from the CMC14 catalogue data. They made use of the availability of a large number of suitable CMC14 stars within the data image to make "reasonably accurate magnitude" measurements without resorting to all-sky photometry. This method is basically the same as presented here. Dymock and Miles limited their presentation to "V" magnitudes of asteroids using the CMC14 catalogue as reference. Their procedure, however, is applicable to any other available catalogue and can be used for stars as well as asteroids.

Yoshida (2010) provides a series of conversion coefficients to transform unfiltered instrumental magnitudes of six different CCD chips, as in Henden (2000).

Dunckel (2014) presented a method to obtain calibrated standard magnitudes from measurements of filtered images using APASS magnitudes as reference. This method parallels the procedure presented in this paper, the difference being that Dunckel uses filtered images, while this presentation uses unfiltered images. The results of Dunckel using filtered images, all things being the same, will be more accurate than the use of unfiltered images, but with the disadvantage of signal reduction due to filtering.

The AAVSO Transform Generator (TG; AAVSO 2016) project is a recently developed online tool that allows the easy calibration of a filtered imaging system and the calculation of standard magnitudes of stars imaged by a CCD camera. It is available for use by amateur astronomers. This provides an easy method to generate photometric measurements suitable for AAVSO observing programs.

3. Acquiring instrumental magnitudes

Images of the M-67 star field were made using a 12 -inch diameter f/5 Newtonian reflector with an SBIG ST402me CCD
camera. The camera was mounted at prime focus. A series of images of M-67 was made in a single night spanning air masses 1.2 to 2.0. The images were 20 -second exposures without filter.

Each image was dark- and flat-field calibrated using the AIP4win magnitude measurement tool (Berry and Burnell 2005). The stars measured for this exercise were 63 of the 64 Henden (2000) M-67 stars. Star number 56 was out of the image frame and was not measured. The instrumental magnitudes (Imag) of the 63 stars were measured at air masses of $1.2,1.4,1.6$, and 2.0. To increase the data quality, the instrumental magnitudes of 6 consecutive images were averaged to give the approximate equivalent of 120 seconds of exposure.

AAVSO has expanded and refined the M-67 star chart to over 170 calibrated stars. The current AAVSO VSP star chart magnitudes of the 64 Boulder swri numbers (Henden 2000) M-67 stars were obtained from Myers (2012). The finder chart, Appendix A, identifies these 64 stars with their Boulder swri numbers. Of the original 64 Henden (2000) stars, fifteen have been culled from the current AAVSO-VSP list, leaving 49 Boulder swri calibrated stars. A key correlating the 64 swri numbers to the AAVSO-VSP AUIDs is given in Appendix B (Myers 2016). The measured instrumental magnitudes, and the corresponding AAVSO catalogue magnitudes and AUID numbers for the 48 measured stars are given in Appendix C.

4. Determining the color response of the imaging system

For clarity, catalogued reference magnitudes will be designated using upper case, such as "B" and "V". Calculated standard magnitudes derived from measuring an image are designated using lower case, such as "b" and "v". As a general designation, " F " is used to refer to a catalogue magnitude, and " f " designates a calculated magnitude for a generic passband.

To determine the imaging system's color response, the M-67 catalogued magnitudes (B, V, Rc, Ic) were plotted against the measured unfiltered raw instrumental magnitudes (Imag) of the 48 measured stars. Figure 1 shows the B, V, Rc, Ic magnitudes (y-axis) plotted against the unfiltered raw instrumental magnitudes (x -axis) for air mass 1.2. It is seen that the Rc magnitudes are nearly linear. Figure 2 shows the

Figure 1. B, V, Rc, Ic magnitudes (y-axis) compared to the unfiltered raw instrumental magnitudes (x-axis) for air mass 1.2.
residuals ("F" - Imag), that is, the cataloged M-67 magnitudes minus the measured instrumental magnitudes (Imag) plotted against the color index $(\mathrm{B}-\mathrm{V})$, for these four filter passbands at air mass 1.2. The plotted data demonstrate that the imaging system used is consistent with the Rc filter band. This is good information for the general use of this particular system and replicates the results of Henden (2000).

4.1. Calculating transforms: strategy

Using a photometry processing software, the unfiltered CCD image is measured to obtain the raw instrumental magnitudes (Imag) of the target and comparison stars. The several passband magnitudes of the comparison stars are obtained from a suitable photometric catalogue for stars in the image field: APASS, CMC14, or AAVSO star charts, for example. Finally, using the spreadsheet numerical tool "solver," the transformation coefficients of the imaging system for each filter passband of interest are calculated. The spreadsheet automatically applies the calculated transformation coefficients to the raw instrumental magnitudes of the measured stars, calculating their derived standard magnitudes, " f ", for the selected filter band.

The method presented short-cuts the normal photometric procedure which generally requires measuring nearby, out of frame, calibrated reference stars. By using catalogued reference stars within the data image, the reference stars are measured simultaneously with the target star, through the same system, the same atmosphere, and at the same time. This all but eliminates the system and environmental variations of the reference stars with respect to the target star for the image being measured.

4.2. Calculating transforms: calculation equation

The equation used to determine the transformation coefficients is the standard photometric equation. Using the default nomenclature (Boyd 2012), and modified for a generic passband (F), the equation is:

$$
\begin{equation*}
\left.\mathrm{f}=\mathrm{Imag}-\left(\mathrm{k}_{\mathrm{F}}^{\prime} \times \mathrm{X}\right)-\left(\mathrm{k}_{\mathrm{F}(\mathrm{Ci})}^{\prime \prime} \times \mathrm{X} \times \mathrm{Ci}\right)+\left(\mathrm{T}_{\mathrm{F}(\mathrm{Ci})}\right) \times \mathrm{Ci}\right)+\mathrm{Z}_{\mathrm{F}} . \tag{1}
\end{equation*}
$$

where:
$\mathrm{f}=$ Standard magnitude calculated for the " F " filter passband,

Figure 2. The catalogued M-67 magnitudes minus the measured instrumental magnitudes (Imag) plotted against the color index (B-V), for four filter passbands at air mass 1.2.

Imag $=$ Measured unfiltered raw instrumental magnitude, $\mathrm{k}_{\mathrm{F}}^{\prime}=$ Atmospheric extinction coefficient at the observatory, $\mathrm{X}=$ Air mass of the image at the observatory when the image was taken,
$\mathrm{k}_{\mathrm{F}(\mathrm{Ci})}=$ Second order color extinction coefficient, $\mathrm{Ci}=$ Color index of the measured stars calculated using the reference catalogue, e.g. (B-V)
$\mathrm{T}_{\mathrm{F}(\mathrm{Ci})}=$ Instrumental transformation coefficient for the color index Ci,
$\mathrm{Z}_{\mathrm{F}}=$ Zero point offset of the instrumental magnitude.
It is assumed for the purpose of these calculations that all the stars in a single narrow field image (30×30 arc min) have nominally the same air mass and attenuation at elevations above 30 degrees. The users of this procedure should determine the validity of this assumption for their own conditions; see Dunckel (2014, page 109). With this supposition, the values of X , and Z , and the coefficients k^{\prime} and $\mathrm{k}^{\prime \prime}$ for a given passband are essentially constant for all stars in the subject image. Consolidating constants, the working equation to calculate the derived standard magnitudes in filter band " F " becomes:

$$
\begin{equation*}
\mathrm{f}=\mathrm{Imag}+\mathrm{Ci} \times \mathrm{T}^{\prime}+\mathrm{Z}^{\prime} \tag{2}
\end{equation*}
$$

where:

$$
\begin{aligned}
& \mathrm{T}^{\prime}=\mathrm{T}_{\mathrm{F}(\mathrm{Ci})}-\mathrm{k}_{\mathrm{F}(\mathrm{Ci})} \times \mathrm{X} \text { and } \\
& \mathrm{Z}^{\prime}=\mathrm{Z}_{\mathrm{F}}-\mathrm{k}_{\mathrm{F}}^{\prime} \times \mathrm{X} .
\end{aligned}
$$

It is to be noted that in making these calculations, the transformation coefficients are applicable only to the image from which they were derived. While this procedure does determine the static instrumental constants of the imaging system, these constants are combined with X in both T^{\prime} and Z^{\prime} where X is changing with time.

4.3. Calculating transforms: source of data

The data required to make the transformations from instrumental magnitudes to standard magnitudes come from five sources:

1. The star field containing the object of interest is imaged and measured to obtain the raw instrumental magnitudes (Imag) of the target star(s) and the several catalogued reference stars.
2. The standard magnitudes for each of the measured reference stars are extracted from a photometric catalogue for all filter passbands of interest (B, V, Rc, Ic, for example).
3. The color indices (Ci) of each measured star are calculated from the catalogued reference data $(\mathrm{Ci}=(\mathrm{B}-\mathrm{V})$, for example $)$.
4. The sky and system transformation coefficients (T^{\prime} and Z^{\prime}) for the image are determined by the spreadsheet.
5. Finally, the color index, Ci , of the target star must be determined. The Ci depends on the nature of the target. For asteroids or comets, Ci may be estimated based on the solar spectrum. Variable stars generally have variable color indices. Each type of star will present a different challenge to obtaining a proper Ci (see Henden 2000, section 3.0, page 40). Appendix E presents a quick method to determine the color index of a star. Note that it is necessary that the color of the target star be
within the color response of the imaging camera; see section 6 , Conclusions, for an expanded comment.

4.4. Calculating transforms: spreadsheet

For this procedure, Equation 2 is used to calculate the values of the "derived" standard magnitudes of each measured star in the subject image, (b, v, r, i, for example). The "solver" or "optimize" spreadsheet tool will calculate an optimum set of constants that satisfy a given set of boundary conditions. Within the spreadsheet algorithm, the constants T^{\prime} and Z^{\prime} are repeatedly changed until the algorithm returns a solution that best meets the boundary conditions. Thus the transformation constants T^{\prime} and Z^{\prime} for any given image are directly calculated using the spreadsheet.

The boundary conditions for the calculations are defined in terms of the residual value R^{\prime}, of each measured star, where $R^{\prime}=(F-f)$; for example, $R^{\prime}=(B-b)$. The boundary conditions are:

1. The standard deviation of the set of $\mathrm{R}^{\prime}(\mathrm{n})$ for n measured stars is minimized, which sets the color and air mass coefficients.
2. The average of the set of $R^{\prime}(n)$ values is zero, which sets the zero point adjustment. Using data from the M-67 star field and for the B-filter passband, the spreadsheet appears as in Figure 3.

Two cells are set up to hold the constants T^{\prime} and $\mathrm{Z}^{\prime},\{\mathrm{C} 14$, C 15 \}. (These are "fixed" cells and are used in each calculation made in row 10). A third cell is set up to calculate the Standard Deviation of the residuals, $\operatorname{StdDev}\left(\mathrm{R}^{\prime}(\mathrm{n})\right),\{\mathrm{C} 12\}$, and a fourth cell is set up to calculate the average of the residuals $\operatorname{Avg}\left(\mathrm{R}^{\prime}(\mathrm{n})\right),\{\mathrm{C} 13\}$. Rows 4 through 7 contain the catalogued standard magnitudes for the several filter bands of interest for each measured star. Row 8 is the color index calculated for each reference star (B-V).

Note that the target star, as shown, does not have cataloged magnitudes; thus, Ci for the target must be determined from another source and inserted at $\{\mathrm{C} 8\}$ (see section 4.3, item 5). Row 9 is the raw instrumental magnitudes (Imag) of the measured stars. Row 10 is the derived magnitudes; "b" for the "B" passband being used in this example. Row 11 is the calculated residual for each star, (B-b). The "Solver" insert sets the boundary conditions, which are: 1) minimize the standard deviation of the residuals, and 2) make the average of the residuals equal zero. With the spreadsheet set up, clicking "solve" automatically calculates the image transformation coefficients, T^{\prime} and Z^{\prime}, and the derived standard magnitude "b" for each star.

The derived magnitudes for an image can be calculated for any filter band. Figure 3 shows the B-filter band calculation. This is determined by using (B-b)n for the values of $R^{\prime}(n)$. To select the "V" filter band, the R'(n) values used are (V-v)n. A sample spreadsheet is available at: http://users.eoni. com/~garlitzj/Sample_Unfiltered_1.xls .

4.5. Calculating transforms: derived $\mathrm{b}, \mathrm{v}, \mathrm{r}$, i magnitudes

Using the procedure described, the derived magnitudes (b , $\mathrm{v}, \mathrm{r}, \mathrm{i}$) for the standard passbands (B, V, Rc, Ic) were calculated for the 48 M-67 stars described in section 2. These 48 reference stars with their corresponding measured unfiltered instrumental

Figure 3. Spreadsheet using data from the M-67 star field and for the B-filter passband.
magnitudes are listed in Appendix C. The derived (b, v, r, i) magnitudes for air masses $1.2,1.4,1.6$, and 2.0 for each passband (B, V, Rc, Ic) are listed in Appendix D.

Figures 4 and 5 show the raw instrumental magnitudes (Imag) and the " b " and " r " derived magnitudes respectively, plotted against their corresponding catalogued B and Rc magnitudes at air mass 1.2. It is evident from these plots that the calculated magnitudes " b " and " r " are consistent with the catalogued magnitudes B and Rc for these two filter bands. This is especially evident for the B band where the instrumental magnitudes are very widely scattered.

Figures 6 and 7 present the residuals $(B-b)$ and (Rc-r) plotted against their respective color indices ($\mathrm{B}-\mathrm{V}$) and ($\mathrm{Rc}-\mathrm{Ic}$) at air mass 1.2. The standard deviation of these residuals is 0.016 magnitude for ($\mathrm{B}-\mathrm{b}$) and 0.018 magnitude for ($\mathrm{Rc}-\mathrm{r}$).

Table 1 presents the transformation coefficients for the B, V, Rc, Ic filter passbands at air masses of 1.2 and 2.0 for the 48 measured M-67 stars. These coefficients were derived from the unfiltered images of M-67 calculated by the spreadsheet using Equation 2. The color indexes used for the calculations were ($\mathrm{B}-\mathrm{V}$) and ($\mathrm{Rc}-\mathrm{Ic}$) as listed.

5. Assessing the accuracy of the derived magnitudes

For each of the 48 measured stars, the residuals (B-b),
(V-v), (Rc-r), and (Ic-i) were calculated at each air mass. Calculating the standard deviation of these residuals gives the results shown in Table 2. For this star field of 48 well calibrated reference stars, the plots in Figures 4, 5, 6, 7, and the standard deviation values in Table 2 demonstrate that standard magnitudes ($\mathrm{B}, \mathrm{V}, \mathrm{Rc}, \mathrm{Ic}$) can be accurately derived from a single unfiltered image. The derived (b, v, r, i) magnitudes are accurate to a standard deviation of 0.021 magnitude or better for air mass 1.2 through 2.0.

The standard deviations of the residuals in Table 2 are comparable to the average of the errors reported for the calibrated AAVSO M-67 stars as shown in Table 3 and listed in Appendix C. This indicates that the quality of the derived magnitudes is comparable to the quality of the reference magnitudes.

6. Conclusions

An imaging system's color response can be readily demonstrated by plotting the measured unfiltered instrumental magnitudes of a star field of well-behaved stars against the catalogued standard magnitudes of those stars (section 3). The imaging system used in the work for this paper is seen to respond very much like an Rc filter. Thus, for this system, the magnitudes derived from the unfiltered instrumental magnitudes

Table 1. Transformation coefficients Z^{\prime} and T^{\prime} for B, V, Rc, Ic passbands using 48 M-67 stars.

Passband and [Ci]	Airmass $=1.2$				Airmass $=2.0$			
	$B[B-V]$	$V[B-V]$	Rc [B-V]	Ic [Rc-Ic]	$B[B-V]$	$V[B-V]$	Rc [B-V]	Ic [Rc-Ic]
Z'	0.720	0.720	0.817	0.817	0.264	0.264	0.402	0.376
T'	1.407	0.407	-0.239	-1.239	1.451	0.451	-0.061	-1.135

Table 2. Standard deviations for 48 AAVSO M-67 stars.

Filter Band Residuals	B $(B-b)$	V $(V-v)$	$R c$ $(R c-r)$	$I c$ $(I c-i)$	Air Mass
	0.016	0.016	0.018	0.018	1.2
Standard	0.016	0.016	0.017	0.017	1.4
Deviation	0.018	0.018	0.018	0.019	1.6
	0.020	0.020	0.021	0.021	2.0

Figure 4. Raw instrumental magnitudes transformed to standard B magnitudes.

Figure 5. Raw instrumental magnitudes transformed to standard Rc magnitudes.
are similar to making transformations from the Rc passband to the B, V, and Ic passbands.

This paper deals with the $\mathrm{B}, \mathrm{V}, \mathrm{Rc}$, Ic passbands. It is necessary, then, to recognize the limits in making transformations of unfiltered instrumental magnitudes to these passbands. This procedure works because the imaging system acts as a wide band "filter" over the B, V, Rc, Ic wavelength range. Caution is

Table 3. Average reported errors for 48 AAVSO M-67 stars.

Filter Band	B	V	$R c$	Ic
Average of Reported Errors Appendix C	0.020	0.017	0.019	0.023

Figure 6. Residuals (B-b) plotted against (B-V) color index; Residual Std $\mathrm{Dev}=0.016$.

Figure 7. Residuals (Rc-r) plotted against (Rc-Ic) color index; Residual Std $\mathrm{Dev}=0.018$.
due for stars that are very blue (high UV) or very red (high IR) with spectrums that peak outside of the CCD's nominal "filter" range. In this circumstance, the CCD imaging system will not work as a functional filter.

Figure 8 shows images of the long term variable UX Cyg (Spectral type M4-M6). The target star is not quite as bright as the close-by star in the red image (right), but it is much brighter in the image with no filter (left). This is because the response of the KAF-0402ME CCD chip in the camera peaks at about 6,500 angstroms, but its sensitivity extends well beyond 9,000 angstroms. In Figure 9 the spectrum for an M5v star (Pickles

Figure 8. Images of the long term variable UX Cyg (Spectral type M4-M6). The target star is not quite as bright as the close-by star in the red image (right), but it is much brighter in the image with no filter (left). Author's data.

Figure 9. The spectrum for an M5 star shown together with the efficiency curve of the KAF-0402ME camera (Pickles 1998; Diffraction Limited 2015).
1998) is shown together with the efficiency curve of the camera (Diffraction Ltd. 2015). It is evident that the spectram of the star peaks well beyond the camera's IR response. Since the IR light extends beyond the nominal range of the camera's broadband "filter," this star's unfiltered image will not properly transform to the standard B, V, Rc, Ic system.

Noting the cautions for using this method of photometry, it is demonstrated that, for a star field of well-calibrated stars, it is possible to accurately derive standard magnitudes for the $\mathrm{B}, \mathrm{V}, \mathrm{Rc}$, and Ic filter bands from a single unfiltered image.

While the color indices of the catalogued reference stars in an image field can be determined from the catalogue data, the target star may not have a proper color index. The color index for the target star must be determined in order to calculate its standard magnitudes (section 4.3, item 5).

Setting up a spreadsheet using the "solver" or "optimizer" tool provides a simple and quick method to calculate derived standard magnitudes. A sample spreadsheet can be downloaded from: http://users.eoni.com/~garlitzj/Sample_Unfiltered_1.xls.

This procedure requires that the subject star field has a number of well calibrated catalogued stars. The GSC, APASS, and CMC14 catalogues, as well as star charts prepared for measuring variable stars, are available and suitable for most star fields.

7. Acknowledgements

I thankfully acknowledge the AAVSO's presentation of the calibrated catalogue of M-67 stars, and the prior work of Arne Henden in presenting the M-67 unfiltered photometry referenced in this paper.

I also acknowledge the wealth of work on amateur photometry presented by Bruce Gary which has been an invaluable resource for my adventures into all sky photometry (brucegary.net/DifferentialPhotometry/dp.htm).

This research was made possible through the use of the AAVSO Photometric All-Sky Survey (APASS), funded by the Robert Martin Ayers Sciences Fund.

References

AAVSO. 2016, Transform Generator (TG; https://www.aavso. org/tg).Henden, A. A. 2000, J. Amer. Assoc. Var. Star Obs., 29, 35.
Berry, R., and Burnell, J. 2005, Aip4win software and Handbook of Astronomical Image Processing, WillmannBell, Richmond, VA.
Boyd, D. 2012, J. Amer. Assoc. Var. Star Obs., 40, 990.
Copenhagen University Observatory, Institute of Astronomy. 2006, Carlsberg Meridian Catalog 14 (CMC14), Copenhagen Univ. Obs. Inst. Astron., Cambridge.
Diffraction Limited. 2015, Data sheet for KAF-0402ME CCD sensor (http://diffractionlimited.com/product/stf$402 \mathrm{~m} /$).
Dunckel, N. 2014, in The Society for Astronomical Sciences 33rd Annual Symposium on Telescope Science, Society for Astronomical Sciences, Rancho Cucamonga, CA, 105.
Dymock, R., and Miles, R. 2009, J. Br. Astron. Assoc., 119, 149.
Gary, B. L. 2009, All sky photometry for V, R, and r' using unfiltered images-a novel approach (http://brucegary. net/DifferentialPhotometry/dp.htm\#6._ALL_SKY).
Henden, A. A. 2000, Boulder swri numbers, M67 standard stars (https://www.aavso.org/files/m67-Arne.pdf).
Henden, A. A., et al. 2015, AAVSO Photometric All-Sky Survey, data release 9 (http://www.aavso.org/apass).
Myers, G. 2012, M67 Henden Field Comps.STAR (https:// groups.yahoo.com/neo/groups/AIP4Win-Photometry/ files?prop=eupdate).
Myers, G. 2016, private communication (key for AAVSOVSP AUIDs to M-67 Boulder swri numbers).
Pickles, A. J. 1998, Publ. Astron. Soc. Pacific, 110, 863.
Space Telescope Science Institute. 2001, The Guide Star Catalog, Version 2.2 (VizieR On-line Data Catalog: I/271), STScI, Baltimore.
Yoshida, S. 2010, Magnitude system and color conversion formulas; unfiltered CCD instrumental magnitudes (http:// www.aerith.net/astro/color_conversion.html).

Appendix A: M-67 field with original Boulder swri numbers

Figure 10. M-67 field with original Boulder swri numbers (AAVSO 2016). Fifteen Boulder swri number stars have been culled by AAVSO from the current VSP data. These are stars $1,8,9,18,22,26,32,35,45,46,49,52,55,61,62$ (April 2016). Note: Star 56 was out of the author's image frame and was not measured.

Garlitz, JAAVSO Volume 45, 2017

Appendix B: Correlation key for M-67

Correlation key for M-67 AAVSO VSP AUID to Boulder swri numbers (Myers 2016). The AAVSO VSP stars labled "000-000-000" are culled from original Henden (2000) M-67 Stars.

swri Number	AUID						
1	000-000-000	17	000-BLG-899	33	000-BLG-911	49	000-000-000
2	000-BLG-886	18	000-000-000	34	000-BLG-912	50	000-BLG-925
3	000-BLG-887	19	000-BLG-900	35	000-000-000	51	000-BLG-926
4	000-BLG-888	20	000-BLG-901	36	000-BLG-913	52	000-000-000
5	000-BLG-889	21	000-BLG-902	37	000-BLG-914	53	000-BLG-927
6	000-BLG-890	22	000-000-000	38	000-BLG-915	54	000-BLG-928
7	000-BLG-891	23	000-BLG-903	39	000-BLG-916	55	000-000-000
8	000-000-000	24	000-BLG-904	40	000-BLG-917	56	000-BLG-929
9	000-000-000	25	000-BLG-905	42	000-BLG-918	57	000-BLG-930
10	000-BLG-892	26	000-000-000	41	000-BLG-919	58	000-BLG-931
11	000-BLG-893	27	000-BLG-906	43	000-BLG-920	59	000-BLG-932
12	000-BLG-894	28	000-BLG-907	44	000-BLG-921	60	000-BLG-934
13	000-BLG-895	29	000-BLG-908	45	000-000-000	61	000-000-000
14	000-BLG-896	30	000-BLG-909	46	000-000-000	62	000-000-000
15	000-BLG-897	31	000-BLG-910	47	000-BLG-923	63	000-BLG-935
16	000-BLG-898	32	000-000-000	48	000-BLG-924	64	000-BLG-936

Appendix C: Data on M-67 stars

AAVSO M-67 data (April 2016); Boulder swri number Henden (2000). Data taken from VSP Field photometry for EV Cnc; Sequence X16215DHF.

Measured Instr Magnitudes (average of $620-$ sec exposures)						Calibrated and Culled				Average Errors; vsp			
Bldr	Airmas	Airmas	Airmas	Airmas	VSP		AAVSO M	-67 Stars		0.02	0.017	0.019	0.023
swri	1.2	1.4	1.6	2.0	AUID	B	V	Rc	Ic	B err	$V \mathrm{err}$	Rc err	Ic err
1	9.285	9.49	9.71	9.735	-	star culled from swri tlist				-	-	-	-
2	9.024	9.2	9.401	9.412	000-BLG-886	11.553	10.289	9.626	9.063	0.023	0.016	0.021	0.027
3	9.278	9.458	9.656	9.673	000-BLG-887	11.562	10.453	9.886	9.386	0.018	0.014	0.016	0.020
4	9.512	9.696	9.899	9.912	000-BLG-888	11.064	10.489	10.149	9.822	0.016	0.013	0.015	0.021
5	9.368	9.536	9.729	9.748	000-BLG-889	11.617	10.524	9.961	9.471	0.023	0.016	0.020	0.022
6	9.347	9.526	9.722	9.742	000-BLG-890	11.656	10.533	9.952	9.438	0.018	0.012	0.014	0.017
7	9.549	9.732	9.926	9.927	000-BLG-891	11.898	10.763	10.185	9.657	0.019	0.016	0.020	0.023
8	9.986	10.183	10.396	10.408	-	star culled from swri tlist				-	-	-	-
9	10.108	10.298	10.487	10.517	-	star culled from swri tlist				-	-	-	-
10	10.19	10.377	10.59	10.609	000-BLG-892	11.042	10.946	10.902	10.844	0.021	0.019	0.022	0.024
11	10.241	10.428	10.635	10.66	000-BLG-893	11.283	11.064	10.948	10.82	0.019	0.017	0.020	0.024
12	9.968	10.142	10.339	10.353	000-BLG-894	12.221	11.132	10.56	10.059	0.018	0.014	0.017	0.021
13	10.478	10.678	10.894	10.911	000-BLG-895	11.391	11.263	11.215	11.146	0.019	0.016	0.017	0.023
14	10.093	10.268	10.463	10.469	000-BLG-896	12.342	11.266	10.697	10.187	0.016	0.012	0.016	0.020
15	10.31	10.488	10.692	10.709	000-BLG-897	11.911	11.305	10.945	10.609	0.020	0.013	0.018	0.020
16	10.482	10.683	10.903	10.918	000-BLG-898	11.604	11.314	11.149	10.988	0.020	0.017	0.021	0.025
17	10.269	10.454	10.652	10.661	000-BLG-899	12.500	11.427	10.867	10.376	0.017	0.014	0.016	0.020
18	10.396	10.575	10.773	10.787	-	star culled from swri tlist				-	-	-	-
19	10.324	10.506	10.697	10.705	000-BLG-900	12.546	11.494	10.941	10.442	0.016	0.011	0.014	0.017
20	10.644	10.837	11.041	11.059	000-BLG-901	11.949	11.544	11.293	11.050	0.017	0.014	0.017	0.021
21	10.47	10.652	10.844	10.852	000-BLG-902	12.686	11.636	11.081	10.580	0.017	0.012	0.015	0.020
22	10.707	10.895	11.097	11.100	-	star culled from swri tlist				-	-	-	-
23	11.192	11.384	11.593	11.601	000-BLG-903	12.572	12.116	11.835	11.566	0.016	0.013	0.015	0.020
24	11.003	11.174	11.369	11.375	000-BLG-904	13.138	12.138	11.602	11.122	0.016	0.012	0.018	0.021
25	11.232	11.409	11.62	11.627	000-BLG-905	12.883	12.213	11.83	11.477	0.016	0.012	0.014	0.018
26	11.402	11.604	11.804	11.822	-	star culled from swri tlist				-	-	-	-
27	11.273	11.457	11.659	11.664	000-BLG-906	12.808	12.246	11.914	11.588	0.016	0.013	0.016	0.021
28	11.317	11.515	11.723	11.743	000-BLG-907	12.823	12.254	11.917	11.599	0.017	0.015	0.019	0.020
29	11.266	11.451	11.656	11.660	000-BLG-908	13.359	12.38	11.86	11.409	0.016	0.013	0.015	0.021
30	11.337	11.525	11.723	11.738	000-BLG-909	13.136	12.392	11.965	11.571	0.016	0.011	0.015	0.020
31	11.406	11.602	11.799	11.803	000-BLG-910	12.971	12.41	12.069	11.716	0.016	0.013	0.015	0.018
32	11.579	11.765	11.963	11.977	-	star culled from swri tlist							-
33	11.557	11.747	11.947	11.961	000-BLG-911	13.129	12.54	12.194	11.860	0.021	0.018	0.020	0.026
34	11.58	11.758	11.969	11.973	000-BLG-912	13.139	12.56	12.216	11.876	0.022	0.019	0.022	0.024
35	11.516	11.707	11.911	11.916	-	star culled from swri tlist				-	-	-	-
36	11.612	11.789	12.001	12.004	000-BLG-913	13.171	12.589	12.242	11.909	0.022	0.02	0.022	0.024
37	11.635	11.829	12.027	12.039	000-BLG-914	13.191	12.623	12.287	11.953	0.024	0.021	0.022	0.025
38	11.62	11.804	12.001	12.013	000-BLG-915	13.241	12.629	12.272	11.925	0.022	0.02	0.022	0.023
39	11.659	11.842	12.042	12.055	000-BLG-916	13.215	12.633	12.29	11.961	0.022	0.019	0.021	0.023
40	11.664	11.852	12.058	12.074	000-BLG-917	13.246	12.64	12.285	11.96	0.022	0.019	0.021	0.024
41	11.675	11.86	12.06	12.065	000-BLG-918	13.263	12.652	12.299	11.975	0.023	0.019	0.022	0.025
42	11.682	11.885	12.084	12.101	000-BLG-919	13.271	12.653	12.298	11.975	0.021	0.019	0.021	0.024
43	11.738	11.936	12.136	12.153	000-BLG-920	13.166	12.665	12.367	12.092	0.022	0.019	0.021	0.023
44	11.684	11.864	12.064	12.071	000-BLG-921	13.339	12.672	12.285	11.927	0.021	0.019	0.021	0.024
45	11.651	11.835	12.037	12.047	000-BLG-922	star culled from swri tlist				-	-	-	-
46	11.734	11.921	12.118	12.134	-	star culled from swri tlist				-	-	-	-
47	11.716	11.899	12.096	12.119	000-BLG-923	13.280	12.692	12.344	12.01	0.023	0.020	0.023	0.025
48	11.715	11.91	12.11	12.114	000-BLG-924	13.278	12.708	12.378	12.049	0.022	0.019	0.022	0.024
49	11.762	11.952	12.158	12.171	-	star culled from swri tlist				-	-	-	-
50	11.721	11.908	12.096	12.129	000-BLG-925	13.468	12.731	12.311	11.945	0.021	0.019	0.021	0.024
51	11.661	11.853	12.048	12.051	000-BLG-926	13.57	12.752	12.303	11.89	0.023	0.021	0.023	0.025
52	11.796	11.989	12.189	12.210	-	star culled from swri tlist				-	-	-	-
53	11.728	11.925	12.113	12.125	000-BLG-927	13.513	12.772	12.364	11.972	0.022	0.019	0.021	0.022
54	11.847	12.024	12.222	12.246	000-BLG-928	13.349	12.79	12.459	12.149	0.020	0.018	0.02	0.024
55	11.925	11.99	12.199	12.241	-	star culled from swri tlist				-	-	-	-
56	-	-	-	-	000-BLG-929	out of image not measured				-	-	-	-
57	11.847	12.034	12.243	12.259	000-BLG-930	13.386	12.815	12.478	12.155	0.022	0.019	0.022	0.024
58	11.856	12.041	12.236	12.261	000-BLG-931	13.376	12.819	12.481	12.160	0.023	0.019	0.022	0.025
59	11.862	12.06	12.264	12.276	000-BLG-932	13.378	12.821	12.489	12.187	0.023	0.021	0.023	0.025
60	11.891	12.078	12.274	12.291	000-BLG-934	13.380	12.854	12.533	12.221	0.021	0.019	0.021	0.025
61	11.971	12.177	12.38	12.389	-	star culled from swri tlist				-	-	-	-
62	11.792	11.977	12.186	12.186	-	star culled from swri tlist				-	-	-	-
63	11.845	12.031	12.231	12.244	000-BLG-935	13.871	12.958	12.470	12.015	0.024	0.02	0.023	0.025
64	11.938	12.102	12.307	12.317	000-BLG-936	13.835	12.986	12.521	12.109	0.022	0.02	0.022	0.024

Appendix D: Unfiltered instrumental magnitudes transformed to "standard" B, V, Re, Ic magnitudes
Unfiltered instrumental magnitudes for 48 Calibrated Stars transformed to "standard" B, V, Rc, Ic magnitudes (b, v, r, i) for air mass (X) of 1.2, 1.4, 1.6, and 2.0. "-" in column 2 indicates culled reference star.

Appendix E: Determination of target star Ci

It is possible to use two images taken with different filters and the spreadsheet process described above to determine a color index for the target star (Dunckel 2014). Making two different filtered images of the subject star field such as B and V , the color index $(\mathrm{B}-\mathrm{V})$ can be calculated. The filtered images are photometrically processed just like the unfiltered images, giving Imag_B and Imag_V. Two spreadsheets are set up using the catalogued magnitudes, one for B and the other for V. The two filtered instrumental magnitude sets are used as the data source (Imag_B) for the B spreadsheet, and (Imag_V) for the V spreadsheet. Using the spreadsheets, the two filtered data sets are each processed using the same "test" value for the color index of the target star at cells $\{\mathrm{C} 8\}$, Figure 3. In one of the spreadsheets, a cell is set to calculate the derived (b-v) value. The value (b) is from the B spreadsheet and (v) from the V spreadsheet at cells $\{\mathrm{C} 10\}$, Figure 3. The same test value $(\mathrm{B}-\mathrm{V})$ for the target is placed in each spreadsheet and repeatedly changed until the calculated $(b-v)$ is equal to the test $(\mathrm{B}-\mathrm{V})$. Using the calculated ($\mathrm{b}-\mathrm{v}$) value as the next "test" ($\mathrm{B}-\mathrm{V}$) value, works well and is found to quickly converge to the proper $(\mathrm{v}-\mathrm{b})=(\mathrm{V}-\mathrm{B})$ value thus giving a $\mathrm{Ci}=(\mathrm{B}-\mathrm{V})$. Note: the filtered images must be made during the same session and close to the same time as the unfiltered images.

Appendix F: Slope factor-a proposition for discussion

The slope factor, S^{\prime}, is an empirically determined transformation coefficient. In using the spreadsheet model, it was discovered that without a slope coefficient, a linear fit of the

Figure 11a. M-67 catalogued stars using a relatively high number of stars.
derived magnitudes (f) was generally "skewed" to the slope of the reference magnitudes (F). With a slope coefficient S^{\prime} applied to the instrumental magnitudes (Equation 3), the linear fit of the derived magnitudes better aligns with the reference magnitudes. The standard deviation of the residuals ($\mathrm{V}-\mathrm{v}$, for example) is improved as would be expected. Experience has shown that generally the improvement to the standard deviation is from 0.001 to 0.010 , depending on the quality of the instrumental magnitudes and the calibration of the reference stars.

Figures 11a and 11 b show the effect on the residuals for two different star fields. Figure 11a is for the well calibrated M-67 cataloged stars using a relatively high number of stars (48). This data set is well calibrated and the improvement made by using S^{\prime} is negligible.

Figure 11b is for the Rubin 152 star field using APASS magnitudes for reference. The transformation for this star field is with fewer stars and the calibration of the stars is of somewhat less quality. The application of the S^{\prime} factor here is significant. As stated, this is an empirical factor and may or may not suit a given imaging system and or star field.

The "slope" factor is easily calculated. Simply place the factor (S^{\prime}) into Equation 2, thus:

$$
\begin{equation*}
\mathrm{f}=\mathrm{S}^{\prime} \times \mathrm{Imag}+\mathrm{Ci} \times \mathrm{T}^{\prime}+\mathrm{Z}^{\prime} \tag{3}
\end{equation*}
$$

The spread sheet is modified to have three unknown constants, $\mathrm{T}^{\prime}, Z^{\prime}$, and S^{\prime}. The calculations within the spreadsheet will then automatically provide the three constants and the derived magnitude values for the selected passband are calculated as before.

Figure 11b. Rubin 152 star field using APASS magnitudes for reference.

Southern Clusters for Standardizing CCD Photometry

Terry T. Moon
Centauri Observatory, 14 Ada St, Scottsdale, Tasmania 7260, Australia; texmoon0@gmail.com

Received November 7, 2016; revised November 24, 2016; accepted December 2, 2016

Abstract

Standardizing photometric measurements typically involves undertaking all-sky photometry. This can be laborious and time-consuming and, for CCD photometry, particularly challenging. Transforming photometry to a standard system is, however, a crucial step when routinely measuring variable stars, as it allows photoelectric measurements from different observers to be combined. For observers in the northern hemisphere, standardized UBVRI values of stars in open clusters such as M67 and NGC 7790 have been established, greatly facilitating quick and accurate transformation of CCD measurements. Recently the AAVSO added the cluster NGC 3532 for southern hemisphere observers to similarly standardize their photometry. The availability of NGC 3532 standards was announced on the AAVSO Variable Star Observing, Photometry forum on 27 October 2016. Published photometry, along with some new measurements by the author, provide a means of checking these NGC 3532 standards which were determined through the AAVSO's Bright Star Monitor (BSM) program (see: https://www.aavso.org/avsonet-epoch-photometrydatabase). New measurements of selected stars in the open clusters M25 and NGC 6067 are also included.

1. Choice of southern clusters for establishing standard magnitudes and colors

Stars in bright open clusters are well-suited for standardizing CCD photometry undertaken with small telescopes, the brighter stars in such clusters encompassing a range in magnitude from 6 to 11 . While there are many bright southern clusters with stars in this magnitude range most of these clusters are young; their brighter stars being predominantly of earlier spectral types (e.g. NGC 4755). As such, their brighter stars do not span a suitably wide range of color index.

NGC 3532 is a cluster at a southern declination of about -59° that has a suitably wide range in the color indices of its stars. NGC 6067 is a more compact southern cluster (declination about -54°) with surrounding field stars of diverse spectral type. Both open clusters are readily visible from southern latitudes through low air masses. While further north, at a declination of about -19°, M25 also has bright stars that encompass a wide range of spectral type. As there were multiple sources of published UBV measurements for these three clusters, I concentrated on measuring selected brighter stars in or around these three clusters in V and I bands only.

2. Choice of BVI photometric passbands

The contemporary UBVRI system (Bessell 1990, 1995, 2005) has evolved from the original UBV system introduced by Johnson and Morgan (1953). Initially the UBV system was established with reference to only ten primary standard stars from spectral type B8 to K5. Further photometric standards were added by Johnson and Harris (1954), producing a system with accuracies of 0.02 to 0.03 in $\mathrm{V}, 0.01$ to 0.015 in $\mathrm{B}-\mathrm{V}$, and 0.02 to 0.03 in U-B (Johnson and Harris 1954; Harmanec et al. 1994).

Despite observers using different detectors, filters, observing approaches, and processing techniques, V magnitudes and $\mathrm{B}-\mathrm{V}$ indices have been routinely and reliably standardized to within 0.02 magnitude (Bohm-Vitense 1981; Henden and Kaitchuck 1990; Harmanec et al. 1994; Henden 2004, Bessell and Murphy 2011). Since its inception the original UBV system
has been able to be reproduced using many different detectors ranging from photomultiplier tubes and photographic emulsions through photodiodes to, more recently, CCDs. Usefully, V and $\mathrm{B}-\mathrm{V}$ can be readily related to the earlier photographic magnitude and color index and those of many other photometric systems (Harmanec 1998; Bessell 2000; Harmanec and Božić 2001).

Kron and Smith (1951), Johnson (1966), and Cousins (1976) all extended the original UBV system with R and I bands but they used different R- and I-band filter sets, resulting in substantially different RI systems (Bessell 1979; Bessell 1983; Bessell 2005). The UBVRI system in widespread use today has been developed by combining the Johnson UBV and Cousins RI systems. Passbands for this contemporary UBVRI system are defined by Bessell $(1990,2005)$ and Bessell and Murphy (2011). Measurements made using appropriate filter sets can then be readily and accurately standardized using values given in the lists published by Menzies et al. (1989), Landolt (1983, 1992) and Kilkenny et al. (1998). As the Johnson, Kron, and Eggen RI systems have fallen into disuse I have chosen to drop the subscripts, with UBV referring to the Johnson bands and RI to the Cousins bands.

Measurements in five bands can be time-consuming and, for many observing programs, unnecessary. It is then prudent to consider the trade-off between numbers of bands in which measurements are made and the number of measurements of a particular star or group of stars. This can be critical when measuring short-period variations in a star or for accumulating measurements of a sufficiently large sample of long-period variables.

Challenges for standardizing measurements in the U-band are well documented (AAVSO 2011; Bessell 1990, 2005; Bessell and Murphy 2011; Bond 2005; Cousins 1966; Cousins and Jones 1976; Harmanec et al. 1994). The problems with accurately reducing and transforming such measurements to the standard system range from equipment vagaries such as poor response of CCDs in the ultraviolet region and the red leak of U filters, through a large correction for atmospheric extinction and adjustment of the zero-point for different temperature ranges, to astrophysical considerations associated with the Balmer jump.

In many instances an assessment of return on investment by observers undertaking CCD photometry of variable stars is likely to lead to a decision not to make U-band measurements.

Bessell (1990) also discusses the vagaries of measurement in the R band and problems that can arise in standardizing color indices constructed from it. Like Bond (2005), and in accord with a suggestion from Bessell (2003), I came to the conclusion that a good compromise is to focus on the BVI bands of the contemporary UBVRI system. I thus sought to investigate V , B-V, and V-I values for selected stars in the southern cluster NGC 3532, some of the brighter stars in M25, and stars in and around the more compact open cluster NGC 6067.

3. Equipment and techniques

The equipment and techniques used are described by Moon (2013) and follow methods outlined in the AAVSO CCD Observing Manual (AAVSO 2011). For CCD-camera measurements an observation in a particular band comprised a suitable number of stacked images. The general approach was to emulate that taken with photomultiplier tubes and photodiodes (e.g. as described by Optec 2012), where up to six consecutive measurements (each being a ten-second integration) are made for each observation, resulting in an observation spanning about a minute. The light frames taken were processed by subtracting dark frames taken at the same detector temperature and exposure time, then corrected using flat field images for the filter through which the light frames were taken.

AAVSO (2011) discusses the problems that can arise from short exposure times. Such effects were confirmed through analysis of $1-$, 2 -, and 4 -second exposures. Where possible, CCD photometry of the clusters was standardized using standard stars (Menzies et al. 1989) measured using the same exposure times. Scaling factors were, however, determined for short exposure times and applied in those instances where longer exposures would have resulted in "saturation" for the stars being measured. (A similar situation arises when using photomultiplier tubes or photodiodes. Typical sensitivity settings of 1,10 , and 100 are notional and it is advisable to either measure standard, comparison, and program stars on the same sensitivity setting or determine the actual ratios of the sensitivity settings.)

4. NGC 3532

4.1. Published photometry

WEBDA (2014) gives V, B-V, and V-I values for many of the brighter stars in NGC 3532, with the cluster having been measured in UBV bands by Koelbloed (1959), Fernandez and Salgado (1980), and Claria and Lapasset (1988) and in UBVRI bands by Wizinowich and Garrison (1982). However, further examination of Wizinowich and Garrison (1982) photometry gave cause for concern as V-I values listed were inconsistent with the $\mathrm{B}-\mathrm{V}$ values and spectral types. Reportedly, the I-band measurements were made on the Cousins system but the values listed are clearly discrepant.

More recently Clem et al. (2011) undertook a deep, widefield CCD survey of the open cluster NGC 3532. Their new

BVRI photometry covers a one square degree area reaching from the brighter stars in the cluster down to stars with $\mathrm{V} \sim 21$. This catalogue thus appears to be the ideal source for choosing cluster stars to standardize BVI photometry. Importantly, Clem et al. (2011) compared their results with the other photometric studies of NGC 3532 listed in WEBDA. They also identified the discrepant RI values of Wizinowich and Garrison (1982) and a systematic difference in the V magnitudes, noting there were no other published measurements in RI bands that could help resolve the discrepancy. They did, however, note the excellent accord between their measured and the published values for the standard stars they observed.

Figure 1a shows the difference between the V magnitudes measured by Clem et al. (2011) and the average from other sources as a function of $\mathrm{B}-\mathrm{V}$; there is no appreciable color trend, with the average difference being -0.024 magnitude. Figure 1 b shows the difference between $\mathrm{B}-\mathrm{V}$ as measured by Clem et al. and the average from other sources. Again, there is good agreement, the average difference being 0.004 magnitude. Overall, there is good agreement of the measured V and B-V of Clem et al. with the mean values from the other sources listed in WEBDA for 41 of the brighter stars in NGC 3532.

NGC 3532 standards were recently added to the AAVSO's VSP database. The values used are measurements from the AAVSO's Bright Star Monitor (BSM) program (AAVSO 2016) and provide a homogeneous source of well-transformed values from the brighter stars (~ 7 th magnitude) down to about 11th magnitude. Figure 2 shows the differences between new AAVSO standard values and those of Clem et al. (2011) in V, B-V, and V-I. The 32 brighter stars of NGC 3532 used in this analysis were those measured in the AAVSO BSM program, by Clem et al., and by the author, thus providing three independent sources for the V and I magnitudes.

Winizowich and Garrison (1982) claimed to have used the UBVRI photometer described by Fernie (1974) and values for Cousins E-region standards given by Menzies et al. (1980). Fernie describes the I-band filter for this photometer as a combination of Schott BG3 and RG610 glasses. This gives a passband that cuts on at about 660 nm and extends out past 1000 nm , matching the Johnson rather than the Cousins I-band (which cuts on at about 710 nm and only extends to around 900 nm). Fernie (1974) also notes that he used stars listed by Iriarte et al. (1965), i.e. measured on the Johnson RI system, to standardize

Figure 1. (a, upper plot) Difference between V magnitudes measured by Clem et al. (2011) and mean of other published photometry. (b, lower plot) Difference between B-V measured by Clem et al. and mean of other published photometry.

Figure 2. (a, upper plot) Difference between BSM_Berry and Clem et al. (2011) V magnitudes. (b, middle plot) Difference between BSM_Berry (AAVSO 2016) and Clem et al. B-V indices. (c, lower plot) Difference between BSM_Berry and Clem et al. V-I indices.
his system. The values of V-I given by Wizinowich and Garrison thus appear to have been made in the Johnson I-band but standardized against Cousins standards. Wizinowich and Garrison also noted that their V magnitudes were several hundredths of a magnitude fainter than those of Koelbloed (1959) and Fernandez and Salgado (1980). Owing to errors arising from their using a Johnson-like instrumental system and Cousins standards, Wizinowich and Garrison's measurements were not used in my analysis of BVI photometry for stars in NGC 3532.
4.2. New VI measurements of 41 of the brighter stars in NGC 3532

To check the I-band photometry of Clem et al. for the brighter stars in NGC 3532, I observed a selection of stars of different spectral types in the range of $6<\mathrm{V}<11$ on four nights in 2012-2013 and eight nights in 2015 in both V and I. Each night, extinction stars and Cousins E-region standards (Menzies et al. 1989) were also measured. The focus was on measurements of V and V-I as, discounting the photometry of Wizinowich and Garrison, the dispersions in V and $\mathrm{B}-\mathrm{V}$ between the various sources were small (within acceptable transformation errors as discussed above). There was also good agreement with V and $\mathrm{B}-\mathrm{V}$ from photographic UBV photometry, V from uvby and Geneva photometry, and V derived from Tycho B_{T} and V_{T}.

Table 1 lists the mean value of my measured V and $\mathrm{V}-\mathrm{I}$ for 41 of the brighter stars in NGC 3532. Column 1 gives the Fernandez and Salgado (1980) number for each star; this is the numbering system used for NGC 3532 in both the GCPD (Mermilliod et al. 1997) and WEBDA (2014). Column 2 gives the HD, CPD, or GSC number as a cross-reference and Column 3 lists the spectral type.

Figure 3 compares my V and V-I measurements with those of Clem et al. There is no color trend for the V magnitudes, the average difference being 0.019 magnitude. For the V-I index

Table 1. V and V-I measured by the author for 41 brighter stars in NGC 3532 (light variations of star number 221 are appreciable).

Star	HD/CPD/GSC	Sp. type	V	$V-I$
4	-58 3069	A1V	8.959	0.076
19	96445	G6II-III	7.702	0.955
37	96260	A	9.319	0.021
38	-58 3044	A1V	9.556	0.091
40	96227	A2V	8.208	0.031
49	96305	A0/1IV-V	8.549	-0.023
50	96246	A0V	8.319	0.042
100	-58 3092	G9III	7.454	0.999
113	96472	A0IV	8.560	0.043
122	-58 3077	G6III	8.163	0.935
132	8627-02126		11.243	0.445
139	96245	A0	8.336	-0.01
152	96174	G8III	7.765	0.903
160	96175	G5	7.654	0.949
182	-583051		9.471	1.025
199	96489	A2III-IV	8.063	0.074
215	96564	B9IV	7.809	0.019
221	96544	K2II/III	6.069	1.217
236	96584	K3/4	8.225	1.592
246	96386	A0	9.815	0.086
273	96122	F2Ib	7.932	0.765
278	96137	A0IV	8.201	-0.042
285	-58 3004	A5III	10.597	0.189
317	96473	B9.5V	8.435	-0.021
337	96668	A0V	8.294	0.023
345	96620	A0IV	7.385	0.062
356	-58 3143		10.307	0.422
361	96653	A0III	8.37	0.049
362	-58 3139	A2V	9.585	0.121
363	96609	B9	8.591	0.007
380	96652	A2	9.247	0.05
409	96226	B8	8.037	-0.138
420	96059	A0III	8.008	0.049
447	96685	B9	9.676	0.223
448	-583151	G1:	9.951	0.618
473	95990	G	9.236	0.44
480	96247	G1 Iab/b	7.715	0.076
483	96285	A0V	8.998	-0.004
495	96755	A0	8.43	0.019
498	8628-0884	M4	10.599	2.653
522	96118	K3 III	7.644	1.33

Figure 3. (a, upper plot) Difference between V magnitudes measured by the author and Clem et al. (2011). (b, lower plot) Difference between V-I measured by the author and that measured by Clem et al.
there is also good agreement, with the average difference being -0.021 magnitude.

In summary, there is good agreement between the various published sources for V and $\mathrm{B}-\mathrm{V}$, and between my $\mathrm{V}-\mathrm{I}$
measurements and those of Clem et al. (2011). Importantly, the V and I measurements by the author and by Clem et al. are in excellent agreement with the new AAVSO standard values while B and V values by Clem et al. and from other sources are also in good agreement with the new AAVSO standard values. This strongly supports use of the new AAVSO NGC 3532 standards by southern hemisphere observers for standardizing their BVI photometry.

5. M25

V and $\mathrm{B}-\mathrm{V}$ measurements of stars in M25 (WEBDA 2014) have been made by Niconov et al. 1957; Johnson 1960; Sandage 1960; Wampler et al. 1961; Landolt 1964; Stoy 1963; Marlborough 1964; Lee 1970; Stobie 1970; Eggen 1971; Schmidt 1971; Corben et al. 1972; Epps 1972; Cousins 1973; Klare and Neckel 1977; Gieren 1981; Schild et al. 1983; Pedreros 1984; Shobbrook 1992; and An et al. 2007. Unfortunately, there remains a paucity of I-band measurements for what are relatively bright stars. Twelve of the brighter stars in M25 were thus measured in V and I-band on five nights in 2015. On each night extinction stars and Cousins E-region standard stars (Menzies et al. 1989) were also measured.

Table 2 lists the V, B-V, and V-I values for twelve of the brighter stars in M25. Column 1 gives the cluster number for each star as used in WEBDA (2014) and GCPD (Mermilliod et al. 1997). Column 2 gives the HD or Tycho number as a crossreference and Column 3 lists the spectral type from SIMBAD. The V magnitudes, and $\mathrm{B}-\mathrm{V}$ and $\mathrm{V}-\mathrm{I}$ color indices listed were determined as follows:

- V magnitudes given in Column 4 are the average of measurements from all available sources including measurements made by the author. No weightings were applied.
- B-V colors given in Column 5 were determined by averaging published measurements from all available sources. Again, no weightings were applied.
- V-I color indices listed in Column 7 are mostly the author's measurements. There are three sources for I-band measurements of HD 170657: Eggen (1971), Mermilliod et al. (1997), and Koen et al. (2010). There are also I-band measurements of HD 170886 by Eggen (1971) and listed in Mermilliod et al. (1997), and for HD 170820 listed in Mermilliod et al. (1997). All published values are in close agreement with my measurements. For these three stars, V-I values given in Table 2 are the averages of my measurements and published values; no weightings were applied.

Column 6 lists the number of sources used to determine B-V (for V, my measurements were combined with published values from the number of sources listed). There were no photoelectric measurements of B-V listed for stars 233 and 268; B-V for star 233 was thus determined using Tycho photometry but for star 268, the listed photographic measurement of $\mathrm{B}-\mathrm{V}$ has been used. These B-V values are italicized to indicate that they were not derived from direct BV photoelectric measurements.

There are published V magnitudes derived from uvby photometry for six of these stars. On average, they differed from the V given in Table 2 by 0.011 magnitude. Geneva photometry

Table 2. V, B-V, and V-I for selected stars in M25.

Star	$H D / T y c$	Sp. Type	V	$B-V$	s	$V-I$
26	170657	K2V	6.818	0.850	11	0.918
49	$6274-1625-1$	M2	9.071	1.927	4	2.543
70	$6274-1131-1$	F0V	8.980	0.427	3	0.541
91	170719	B5/7III	8.086	0.302	5	0.438
111	$6274-1331-1$	A1V	9.004	0.393	5	0.445
150	170820	K0III	7.385	1.567	7	1.638
163	170835	B2Ve	8.827	0.237	6	0.286
167	170836	B8II	8.956	0.307	3	0.418
153	170860	B9IV/V	9.404	0.318	4	0.475
174	$6275-0720-1$	M3III	8.961	2.028	2	2.621
233	170763	B8/9II/IIIe	8.935	0.25	1^{*}	0.432
251	170886	G3/5Ib	6.949	1.385	3	1.436
268	170887	G8/K0III	7.966	1.45	1^{*}	1.488

Table 3. V, B-V, and V-I for selected stars in NGC 6067.

Star	HD/Tyc	Sp. Type	V	$B-V$	s	$V-I$
229	145039	K7	8.883	1.602	1*	1.822
	145040	B8 IV	9.252	0.061	1*	0.038
	145041	K1 III	8.803	1.290	1	1.345
	145109	A2 e	8.724	0.260	1	0.179
	145110	B9 IV	6.528	0.020	1	0.049
	145175	K3 III	8.640	1.280	1	1.337
	145304	B1/B2 III/IVe	e 8.820	0.127	2	0.422
	145324	A5 Ib/II	7.295	0.360	3	0.518
	145523	G2 V	7.808	0.580	2	0.618
	8710-2212-1	G8	9.644	1.637	1*	1.592
	8711-0788-1		9.656	1.321	1*	1.496
	8711-1458-1	G7	9.796	1.203	1*	1.081
261	8710-0033-1	K2 Ib	8.764	1.743	4	1.650
267	8710-0209-1	B2 III	9.031	0.181	5	0.314
271	8710-0125-1	B5 III 10	10.534	0.220	3	0.390
275	8710-0049-1	K3 (II)	9.141	1.793	7	1.900
276	8710-0126-1	K3 II +K 3 Ib	9.495	1.915	3	2.030
298	8710-0170-2	A7 II	8.995	0.500	5	0.748
303	8711-0530-1	K2 II-Ib 10	10.004	1.520	3	1.403
306	8711-1312-1	K3 II 10	10.051	1.663	6	1.792

was available for only three of the stars; again, agreement was good.

V, B-V, and V-I listed here may prove useful to southern hemisphere observers for:

- Setting up suitable comparison stars for variables in M25 (such as V3508 Sgr) as the values currently listed for comparison stars have been largely derived from Tycho photometry.
- Occasional checking of the transformation coefficients used to standardize their photometry.

As M25 may be visible to some northern hemisphere observers, it could also provide a means for those collaborating with southern hemisphere observers to check that they have similarly standardized systems.

6. NGC 6067

WEBDA (2014) gives V, B-V for stars in NGC 6067 and the GCPD (Mermilliod et al. 1997) lists V and B-V for a number of brighter, field stars immediately surrounding the cluster. Piatti et al. (1998) and An et al. (2007) have measured V-I for a few of these cluster stars but there are no V-I values listed in the GCPD for the surrounding field stars. Eleven field stars and one
cluster star were measured on nine nights in 2015 with the focus being on measuring their V-I indices. Measurements of several cluster stars from the 2011-12 season were also included.

Table 3 lists the V, B-V, and V-I values for nine stars in NGC 6067 and eleven fields surrounding it. Column 1 gives the cluster number as used in WEBDA (2014). Column 2 gives the HD or Tycho number as a cross-reference and Column 3 lists the spectral type from SIMBAD or WEBDA. The V magnitudes, and $\mathrm{B}-\mathrm{V}$ and $\mathrm{V}-\mathrm{I}$ color indices listed were determined as follows:

- V magnitudes given in Column 4 are the average of measurements from all available sources including measurements made by the author. No weightings were applied.
- B-V colors given in Column 5 were determined by averaging published measurements from all available sources. Again, no weightings were applied. For five of the stars (values shown in italics), the $\mathrm{B}-\mathrm{V}$ was determined from the Tycho photometry.
- V-I color indices listed in Column 7 are mostly the author's measurements. For stars 267 and 275 the author's measurements were combined with published values. For stars $271,276,298$, and 306 the published values are listed.
Column 6 lists the number of measurements from published sources used.

7. Concluding remarks and recommendations

New VI measurements of 41 brighter stars in NGC 3532, published BV measurements as listed in WEBDA, and the BVRI measurements published by Clem et al. (2011) confirm the veracity of the new NGC 3532 standard stars added to the AAVSO's VSP database. The only published photometry not in agreement, that of Winizowich and Garrison (1982), is shown to be discrepant owing to use of Cousins standards with a Johnson I-band filter.

The newly added NGC 3532 standards are well supported by published and new measurements and can be used with confidence by southern hemisphere observers for determining BVI transformation coefficients. As R-band measurements are of interest to those doing DSLR photometry, it would be useful for some southern hemisphere observers to check the values of the NGC 3532 standards in R-band.

For variables in M25, such as V3508 Sgr, there are currently no I-band measurements for the comparison stars. Also, their assigned V and $\mathrm{B}-\mathrm{V}$ values have been largely derived from Tycho photometry. The BVI photometry listed in Table 2 thus provides a resource for determining BVI magnitudes and colors for M25 variable and comparison stars. Additionally, this BVI photometry may be used to check transformation coefficients. Where northern and southern hemisphere observers are collaborating, M25 may also provide an additional means to check if their systems are similarly standardized, as it is at a southern declination of only -19°.

BVI photometry for stars in and around NGC 6067 (Table 3) can be used to establish comparison stars with well-determined magnitudes for variables near NGC 6067. An example is QZ Nor, for which AAVSO comparison stars are yet to be chosen. Again, the BVI photometry listed may be used to check transformation coefficients.

References

AAVSO. 2011, AAVSO CCD Observing Manual (https://www. aavso.org/ccd-observing-manual).
AAVSO. 2016, BSM_Berry (https://www.aavso.org/bsm-berrys-enclosure-setup).
An, D., Terndrup, D. M., and Pinsonneault, M. H. 2007, Astrophys. J., 671, 1640.
Bessell, M. S. 1979, Publ. Astron. Soc. Pacific, 91, 589.
Bessell, M. S. 1983, Publ. Astron. Soc. Pacific, 95, 480.
Bessell, M. S. 1990, Publ. Astron. Soc. Pacific, 102, 1181.
Bessell, M. S. 1995, in New Developments in Array Technology and Applications, eds. A. G. D. Philip, K. A. Janes, A. R. Upgren, IAU Symp. 167, Kluwer Academic Publishers, Dordrecht, 175.
Bessell, M. S. 2000, Publ. Astron. Soc. Pacific, 112, 961.
Bessell, M. S. 2003, personal communication, Mt. Stromlo Observatory, February.
Bessell, M. S. 2005, Ann. Rev. Astron. Astrophys., 43, 293.
Bessell, M. S., and Murphy, S. J. 2011, arXiv:1112.2698 [astro-ph.SR].
Bohm-Vitense, E. 1981, Ann. Rev. Astron. Astrophys., 19, 295.
Bond, H. E. 2005, Astron. J., 129, 2914.
Claria, J. J., and Lapasset, E. 1988, Mon. Not. Roy. Astron. Soc., 235, 1129.
Clem, J. L., Landolt, A. U., Hoard, D. W., and Wachter, S. 2011, Astron. J., 141, 115.
Corben, P. M., Carter, B. S., Banfield, R. M., and Harvey, G. M. 1972, Mon. Not. Astr. Soc. S. Afr., 31, 8.

Cousins, A. W. J. 1966, Observatory, 86, 69.
Cousins, A. W. J. 1973, Mon. Not. Astr. Soc. S. Afr., 32, 11.
Cousins, A. W. J. 1976, Mem. Roy. Astron. Soc., 81, 25.
Cousins, A. W. J., and Jones, D. H. P. 1976, Mem. Roy. Astron. Soc., 81, 1.
Eggen, O. J. 1971, Astrophys. J., Suppl. Ser., 22, 389.
Epps, E. A. 1972, Roy. Obs. Bull., No. 176, 127.
Fernandez, J. A., and Salgado, C. W. 1980, Astron. Astrophys., Suppl. Ser., 39, 11.
Fernie, J. D. 1974, Publ. Astron. Soc. Pacific, 86, 838.
Gieren, W. 1981, Astrophys. J., Suppl. Ser., 47, 315.
Harmanec, P. 1998, Astron. Astrophys., 335, 173.
Harmanec, P., and Božić, H. 2001, Astron. Astrophys., 369, 1140.

Harmanec, P., Horn, J., and Juza, K. 1994, Astron. Astrophys., Suppl. Ser., 104, 121.
Henden, A. A. 2004, "Tricks for High-Precision CCD Photometry" (www.phys.vt.edu/~jhs/phys3154/photometryhighpre.pdf).
Henden, A. A., and Kaitchuck, R. H. 1990, Astronomical Photometry, Willmann-Bell, Richmond, VA.
Henden, A. A., et al. 2014, AAVSO Guide to CCD Photometry, (http://www.aavso.org/sites/default/files/publications_ files/ccd_photometry_guide/CCDPhotometryGuide.pdf).
Iriarte, B., Johnson, H. L., Mitchell, R. I., and Wisniewski, W. K. 1965, Sky \& Telescope, 30, 21.

Johnson, H. L. 1960, Astrophys. J., 131, 620.
Johnson, H. L. 1966, Ann. Rev. Astron. Astrophys., 4, 193.
Johnson, H. L., and Harris III, W. W. 1954, Astrophys. J., 120, 196.

Johnson, H. L., and Morgan, W. W. 1953, Astrophys. J., 117, 313.
Kilkenny, D., van Wyk, F., Roberts, G., Marang, F., and Cooper, D. 1998, Mon. Not. Roy. Astron. Soc., 294, 93.
Klare, G., and Neckel, T. 1977, Astron. Astrophys., Suppl. Ser., 27, 215.
Koelbloed, D. 1959, Bull. Astron. Inst. Netherlands, 14, 265.
Koen, C., Kilkenny, D., van Wyk, F., and Marang, F. 2010, Mon. Not. Roy. Astron. Soc., 403, 1949.
Kron, G. E., and Smith, J. L. 1951, Astrophys. J., 113, 324.
Landolt, A. U. 1964, Astrophys. J., Suppl. Ser., 8, 352.
Landolt, A. U. 1983, Astron. J., 88, 439.
Landolt, A. U. 1992, Astron. J., 104, 340, 436.
Lee, T. A. 1970, Astrophys. J., 162, 217.
Marlborough, J. M. 1964, Astron. J., 69, 215.
Menzies, J. W., Banfield, R. M., and Laing, J. D. 1980, S. Afr. Astron. Obs. Circ., No. 1, 149.
Menzies, J. W., Cousins, A. W. J., Banfield, R. M., and Laing J. D. 1989, S. Afr. Astron. Obs. Circ., No. 13, 1.

Mermilliod, J.-C., Mermilliod, M., and Hauck, B. 1997, "General Catalogue of Photometric Data (GCPD). II," Astron. Astrophys., Suppl. Ser., 124, 349 (http://obswww. unige.ch/gcpd/gcpd.html).

Moon, T. T. 2013, J. Amer. Assoc. Var. Star Obs., 41, 360.
Niconov, V. B., Nekrasova, S.V., Polosuina, N. S., Rachkouvsky, N. D., and Chuvajev, W. K. 1957, Izv. Krym. Astrofiz. Obs., 17, 42.
Optec Inc. 2012, Model SSP-3 Solid-State Stellar Photometer, Lowell, MI (http://www.optecinc.com/).
Pedreros, M. H. 1984, Ph.D. thesis, University of Toronto.
Piatti, A. E., Clariá, J. J., and Bica, E. 1998, Astrophys. J., Suppl. Ser., 116, 263.
Sandage, A. R. 1960, Astrophys. J., 131, 610.
Schild, R. E., Garrison, R. F., and Hiltner, W. A. 1983, Astrophys. J., Suppl. Ser., 51, 321.
Schmidt, E. G. 1971, Astrophys. J., 165, 335.
Shobbrook, R. R. 1992, Mon. Not. Roy. Astron. Soc., 255, 486.
Stobie, R. S. 1970, Mon. Not. Roy. Astron. Soc., 148, 1.
Stoy, R. H. 1963, Mon. Not. Astron. Soc. S. Afr., 22, 157.
Wampler, J., Pesch, P., Hiltner, W. A., and Kraft, R. P. 1961, Astrophys. J., 133, 895.
WEBDA. 2014, database (http://www.univie.ac.at/webda/ webda.html).
Wizinowich, P., and Garrison, R. F. 1982, Astron. J., 87, 1390.

Digital Single Lens Reflex Photometry in White Light: a New Concept Tested on Data from the High Amplitude δ Scuti Star V703 Scorpii

Roy Andrew Axelsen
P.O. Box 706, Kenmore, Queensland 4069, Australia; reaxelsen@gmail.com

Received November 21, 2016; revised March 19, 2017; accepted March 22, 2017

Abstract

A novel method of digital single lens reflex (DSLR) photometry is described. It derives non-transformed instrumental magnitudes from white light (green, blue, and red channels of the DSLR sensor combined), and is assessed by comparing the results with non-transformed instrumental magnitudes from the green channel alone, and with green channel magnitudes transformed to the Johnson V standard. The white light data and the non-transformed green channel data allow differential photometry only; true magnitude values cannot be calculated. The same time series images of the high amplitude δ Scuti star V703 Scorpii were processed by all three methods. The light curves from the white light data were almost identical to those from the non-transformed green channel data and to those in V magnitude, but with a slightly greater amplitude for the variable star (from highest peak to lowest trough of the light curve on each night) in the white light curves. There was also an impression, in some areas, of slightly smoother curves from the white light data, implying improved precision. The check star data in white light showed slightly smaller ranges and standard deviations for most nights, and for all nights averaged, than those for the non-transformed green channel data, and for the transformed V magnitude data, implying that the best precision was achieved by using the data in white light. For most of the peaks in the light curve, the times of maximum in white light differed little from those in V magnitude. Fourier analysis using the Lomb-Scargle method revealed identical power spectra and identical discovered frequencies in white light and in V magnitude. DSLR photometry in white light is a valid procedure, at least in those cases where the color indices of the variable and comparison stars differ by only small values. It is considered promising for the timing of maxima and minima of light curves and for Fourier analysis of those stars with more than one period.

1. Introduction

Following the ground breaking work of Hoot (2007) and Loughney (2010), amateur astronomers have used DSLR cameras to make significant contributions to variable star photometry (Kloppenborg et al. 2012; Richards 2012; Axelsen 2014a-2014d, 2015; Axelsen and Napier Munn 2015, 2016; Deshmukh 2015; Walker et al. 2015). The AAVSO provides detailed methods for observers who wish to avail themselves of this technique, which is capable of yielding results with high precision using modest equipment (AAVSO 2016).

Aperture photometry on images from a DSLR camera must take account of the fact that the camera sensor is composed of a color filter array (Bayer matrix) of green, blue, and red elements. The processing of images from one of the three color channels, usually the green channel, provides the opportunity for simple differential photometry to study events such as the timing of maxima of light curves of pulsating variable stars, and the timing of eclipses in binary stellar systems. In such cases, it is not necessary to transform the magnitude data to a standard system. For more stringent work, photometry of images from two channels (green and blue, for example) or all three channels does allow transformation of the results to a standard system (AAVSO 2016).

One of the disadvantages of photometry with a DSLR camera in comparison with CCD photometry is that not all of the pixels of the DSLR sensor are used, as the green-, blue-, and red-filtered pixels comprise $50 \%, 25 \%$, and 25%, respectively, of the surface of the sensor. For photometry based on the green channel, 50% of the light reaching the sensor therefore cannot be used, and for each of the blue and red channels, the proportion of unused pixels increases to 75%.

In view of these disadvantages, it was decided to trial differential photometry with a DSLR camera using all of the light reaching the sensor, by processing images containing data from all three color channels simultaneously (i.e., images in white light). To the author's knowledge, this strategy has not previously been used. The high amplitude δ Scuti star V703 Scorpii was chosen as a test case for the procedure. It is accepted by most authors to have two periods, 0.11521803 d and 0.14996 d (Plaut 1948 quoted in Ponsen 1963; Ponsen 1961, 1963; Oosterhoff 1966; Koen 2001). Two different sets of measures were used to compare the performance of white light DSLR photometry with differential photometry using non-transformed magnitudes from the green channel, and photometric data transformed to the Johnson V standard; the amplitude of the light curve of V703 Sco in magnitude units, measured from the lowest trough to the highest peak each night; and the standard deviation of the check star magnitudes from each night's time series data. A further two sets of measures applied to the variable star data were used to compare the performance of white light DSLR with photometric data transformed to the Johnson V system; Fourier analysis to identify pulsation frequencies; and the determination of the times of maximum of the peaks of the light curve.

2. Data and analysis

2.1. Observations

V703 Sco was observed by DSLR photometry over 12 nights in 2016 from 11 May to 1 July. A total of 1,254 magnitude determinations were obtained from a total observing time of 62.78 hours. The minimum number of observations on one night was 88 , over 4.41 hours, and the maximum number was

123 , over 6.19 hours. The target field was imaged mostly to the east of the meridian, and for a short time after transit. No meridian flips were performed because incremental shifts in magnitude values were seen after meridian flips when V703 Sco was studied in the 2014 season.

RAW images were taken with a Canon EOS 500D DSLR camera through an $80-\mathrm{mm}$ refracting telescope with a focal length of 600 mm on a Losmandy GM8 German equatorial mount. Exposures of 170 seconds were made at ISO 400, at intervals of 180 seconds (i.e., one image was taken every 180 seconds). Dark frames were taken after the completion of light frames. Flat fields were captured near sunrise the following morning through a white acrylic sheet placed over the front of the telescope, which was aimed at the zenith.

2.2. Data reduction

Aperture photometry was performed with the software AIP4win version 2.4.0 (Berry and Burnell 2011). Measurements from the green channel enabled the calculation of nontransformed differential magnitudes from the formulae:

$$
\begin{align*}
& \text { Var g - Comp g } \tag{1}\\
& \text { Chk g - Comp g } \tag{2}
\end{align*}
$$

where g is the instrumental magnitude and Var, Comp, and Chk refer to the variable, comparison, and check stars, respectively. Measurements from the green and blue channels were used to calculate magnitudes transformed to the Johnson V system, employing transformation coefficients determined from standard stars in the E regions (Menzies et al. 1989). For white light differential photometry, the settings in AIP4win were as follows. In Preferences $>$ DSLR Conversion Settings > DeBayer, Convert Color to Grayscale, the red, green, and blue scales were all set to 1.0 simultaneously. Differential magnitudes for white light photometry were calculated from the formulae:

> Var wl - Comp wl

Chk wl - Comp wl
where wl is the white light instrumental magnitude and Var, Comp, and Chk refer to the variable, comparison, and check stars respectively.

The comparison and check stars were HD 160927 and HD 160432, respectively. The V magnitude and B-V color index for the comparison star were taken to be 8.727 and 0.533 , respectively, and the corresponding values for the check star were taken to be 9.159 and 0.457 . These two stars were chosen because their B-V color indices are close to that of V703 Sco, which from the author's photometry varies from 0.2 to 0.5 approximately.

The time in JD of each magnitude calculation was taken to be the mid point of each DSLR exposure. The heliocentric correction for each night's data was calculated for the mid point in time of the observing run for the night, and the correction applied to all data points for that night. Fourier analyses and
the determination of the times of maximum of the light curve used the heliocentric data.
2.3. Time series analysis and determination of the times of maximum of the variable star light curve

The software peranso (Vanmuster 2014) was used. Fourier analysis employed the Lomb-Scargle routine. The times of maximum of the light curve were taken as the maximum values of fifth order polynomial functions fitted to the magnitude values around each peak in the light curve.

3. Results

3.1. Metrics of the light curves of V703 Sco and the check star Light curves from two representative nights are shown in Figures 1 and 2, respectively. In each figure, the top panel shows transformed V magnitudes (hereafter referred to simply as "V magnitudes"), the middle panel shows non-transformed differential magnitudes from the green channel (hereafter referred to simply as "green magnitudes"), and the bottom panel shows differential magnitudes in white light (hereafter referred to simply as "white light magnitudes"). Each light curve shows data both for the variable star and the check star, with the check star magnitudes represented as the calculated magnitudes minus 1.3 so that variable and check star data can both be seen optimally. The variation in the amplitude between adjacent peaks in the light curves of V703 Sco is typical of a variable star with more than one period.

The variable star light curves in Figure 1, from 11 May 2016, show peaks 1 and 2 (labelled in the top panel of the figure), corresponding to the numbers of the peaks in the first column of Tables 3 and 4. Figure 2, from 13 May 2016, shows peak 4 (labelled in the top panel of the figure), with the latter

Table 1. Photometric data for V703 Sco, listing transformed V magnitudes, nontransformed differential magnitudes from the green channel, and differential magnitudes in white light.

Date (2016)	Var V Range	Varg Range	Var wl Range	Varg, Var V 4 Range	Var wl, Var V 4 Range
May-11	0.479	0.496	0.506	0.017	0.027
May-12	0.469	0.486	0.491	0.017	0.022
May-13	0.483	0.500	0.516	0.017	0.033
May-14	0.482	0.498	0.509	0.016	0.027
Jun-08	0.461	0.469	0.474	0.008	0.013
Jun-09	0.471	0.489	0.503	0.018	0.032
Jun-10	0.488	0.503	0.516	0.015	0.028
Jun-25	0.414	0.428	0.440	0.014	0.026
Jun-27	0.475	0.489	0.490	0.014	0.015
Jun-28	0.390	0.402	0.407	0.012	0.017
Jun-29	0.454	0.469	0.476	0.015	0.022
Jul-01	0.353	0.366	0.374	0.013	0.021
Mean	0.452	0.466	0.475	0.015	0.024
SD	0.043	0.044	0.046	0.003	0.006

Notes. Abbreviations in the above table: Var = Variable star; V=Transformed V magnitude photometric data; Range $=$ Difference between the maximum and minimum magnitudes for each night; $g=$ Non-transformed differential magnitudes from the green channel; wl = White light non-transformed differential magnitudes from all three channels; Δ Range $=$ Difference between the two ranges as indicated at the head of each column; $S D=$ Standard deviation.

Table 2. Photometric data for the check star, listing transformed V magnitudes, non-transformed differential magnitudes from the green channel, and differential magnitudes in white light.

$\begin{aligned} & \text { Date } \\ & (2016) \end{aligned}$	Chk V Range	Chkg Range	Chk wl Range	Chkg, Chk V \triangle Range	Chk wl, ChkV \triangle Range	Chk V SD	Chkg SD	Chk wl SD
May-11	0.082	0.067	0.060	-0.015	-0.022	0.014	0.012	0.010
May-12	0.068	0.064	0.053	-0.004	-0.015	0.013	0.011	0.009
May-13	0.105	0.079	0.056	-0.026	-0.049	0.016	0.012	0.010
May-14	0.054	0.061	0.047	0.007	-0.007	0.011	0.009	0.007
Jun-08	0.092	0.065	0.048	-0.027	-0.044	0.011	0.009	0.007
Jun-09	0.088	0.075	0.078	-0.013	-0.010	0.015	0.013	0.012
Jun-10	0.183	0.151	0.129	-0.032	-0.054	0.018	0.016	0.014
Jun-25	0.043	0.033	0.042	-0.010	-0.001	0.009	0.007	0.007
Jun-27	0.058	0.052	0.048	-0.006	-0.010	0.011	0.010	0.009
Jun-28	0.039	0.031	0.031	-0.008	-0.008	0.008	0.006	0.006
Jun-29	0.046	0.040	0.037	-0.006	-0.009	0.010	0.008	0.007
Jul-01	0.036	0.035	0.033	-0.001	-0.003	0.008	0.007	0.006
Mean	0.075	0.063	0.055	-0.012	-0.019	0.012	0.010	0.009
SD	0.041	0.032	0.027	0.012	0.019	0.003	0.003	0.002

Notes. Abbreviations in the above table: Chk = Check star; V, Range, $g, w l, \Delta$ Range and $S D$ are as for the Notes to Table 1.
being one of the two peaks for which the time of maximum light differed by an unacceptably large value between V magnitude data and white light magnitude data (see below).

The light curves showing magnitudes in white light are similar to those showing green magnitudes and V magnitudes, but there is an impression of slightly smoother areas in the curves for the variable star in the white light panels. Columns 2,3 , and 4 of Table 1 show the data for the amplitudes of the V703 Sco light curves for each night and averaged over all nights. The amplitudes of the variable star light curves from the three different photometric methods show very little difference, with the greatest being on average only 0.024 magnitude units, between the light curves in white light and the light curves in V magnitude.

The check star light curves show poor precision during the early part of each night, when the airmass was 4.2 on 11 May 2016 (Figure 1) and 3.8 on 13 May 2016 (Figure 2). The precision improves later in the night, as the altitude of the star increases and the air mass decreases. There is an impression that the variance is better for the green magnitude data than for the V-magnitude data, and better again for the white light data. These impressions are confirmed by the analysis of the numerical values shown in Table 2, which are considered in detail in the following paragraph.

Columns 2, 3, and 4 list the ranges in magnitude units of the observations for the check star for each night, and at the bottom of the table, the means and standard deviations for all nights. For each observing night, the range is slightly less for the green magnitude data than for the data in V magnitude. For most observing nights, the range for the white light magnitude is less again. The means and standard deviations of the magnitude ranges for the check star show that the most precise data are those for white light magnitudes, and the least precise the V magnitudes, although the differences are small. Columns 7,8 , and 9 analyze the standard deviation of the magnitude values for each night, and their averages. The differences are again small, but once more the white light data are more precise than those for the other two methods of magnitude calculation.

The times of maximum (TOM) of all peaks with long ascending and long descending limbs are shown in Table 3. Peaks associated with a short ascending or descending limb were not measured. The times were determined in PERANSO as the maximum values of fifth-order polynomial expressions fitted to the peaks of the light curve. After this was done for the white light data and the V magnitude data, the difference between the TOM for white light and V magnitude was calculated for each peak, using the formula: TOM in white light minus TOM in V magnitude. All but two of the differences lay within a range of 2.30 min . (from -1.44 min . to 0.86 min .), whereas the other two differences were -6.38 min . and 8.80 min . Those results which lay within a range of 2.30 min . were considered acceptable, because they compared favourably with results in the author's previous DSLR photometric study of ZZ Mic (Axelsen 2015) in which the $\mathrm{O}-\mathrm{C}$ values for 14 TOM obtained over a span of 9.3 days lay within a range of 2.62 min . The other two results (-6.38 min . and 8.80 min .) were therefore considered to be unacceptable. Figure 3 shows part of the light curve of V703 Sco, representing the region around peak 4 (as listed in Tables 3 and 4) plotted in PERANSO, with a fitted fifth-order polynomial expression. The upper panel is the light curve in V magnitude, and the lower panel the light curve from white light magnitude data. The white light plot is smoother than the V magnitude plot.

In view of the two unacceptable results, the TOM for all of the peaks were recalculated from the light curve data, but using center moving averages across three data points instead of the individual magnitude determinations. The results are shown in Table 4. Again, peaks 4 and 10 show unacceptably large differences between the white light and V magnitude data.

The TOM of the two peaks giving the discrepant results were remeasured using the Podgson method (Percy 2007), which involved printing the parts of the light curve containing the peaks to be measured and drawing by hand a smooth curve through the data. Several equally spaced horizontal chords are then drawn between the ascending and descending limbs of the light curve, and the mid points of the chords marked. A smooth

Table 3. Times of maximum (TOM) of V703 Sco in heliocentric Julian days (HJD) in white light (wl) and V magnitude.

Peak	HJD TOM wl	Error	HJD TOM V Mag	Error	wl TOM $-V$ Mag TOM (d)
			wl TOM $-V$ Mag		
TOM (min)					

Notes: The TOM were determined in PERANSO using a 5th order polynomial expression fitted to the peaks of the light curve. The last two columns on the right show the differences in days (d) and minutes (min) between the TOM in wl and the TOM in V magnitude. Unacceptably large differences are seen for peak 4 and peak 10.

Figure 1. Light curves of V703 Sco and the check star from observations taken on one night and showing Peaks 1 and 2 (as listed in Tables 3 and 4). The check star magnitudes shown are the actual calculated magnitudes minus 1.3. The upper panel shows magnitudes transformed to the Johnson V system. The middle panel shows non-transformed magnitudes from the green channel data. The bottom panel shows non-transformed magnitudes from white light images.

Figure 2. Light curves of V703 Sco and the check star from observations taken on one night and including Peak 4 (as listed in Tables 3 and 4).

Table 4. Times of maximum (TOM) of V703 Sco from center moving averages (over 3 magnitude determinations), in heliocentric Julian days (HJD) in white light (wl) and V magnitude.
$\left.\begin{array}{cccccc}\hline \text { Peak } & \text { HJD TOM wl } & \text { Error } & \text { HJD TOM V Mag } & \text { Error } & \begin{array}{c}\text { wl TOM }-V \text { Mag } \\ \text { TOM (d) }\end{array} \\ & & & \text { wl TOM }- \text { V Mag } \\ \text { TOM (min) }\end{array}\right]$

Notes: The TOM were determined in PERANSO using a 5th order polynomial expression fitted to the peaks of the light curve. The last two columns on the right show the differences in days (d) and minutes (min) between the TOM in wl and the TOM in V magnitude. Unacceptably large differences are seen for peak 4 and peak 10.

Figure 3. Part of the light curve of V703 Sco, comprising the region around Peak 4 (as listed in Tables 3 and 4). This is one of the peaks where the TOM differed markedly between the V magnitude data (top panel) and white light magnitude data (bottom panel). The curves were fitted in PERANSO as 5th order polynomial expressions. The Peak and the descending limb of the light curve in white light are smoother than those in the V magnitude light curve.
line is then drawn by hand through the mid points of the chords, and the point at which that line intersects the light curve is taken to be the TOM of the peak. The results for this procedure are shown in Table 5, which reveals that the large discrepancies between the white light TOM and the V magnitude TOM, as seen in Tables 1 and 2, did not persist.
3.2. Fourier analysis of the light curve of V703 Sco in V magnitude and in white light

The Lomb-Scargle routine in the software peranso was employed for this analysis which was applied to the

V-magnitude data and the data in white light, with identical results. Each frequency search requires the input of the start and end frequencies and the resolution, i.e., the number of steps between those frequencies. For f1 (the first frequency sought), start and end frequencies initially selected were 0 and $20 \mathrm{~cd}^{-1}$ with a resolution of 800 , yielding a dominant frequency of $8.67783 \mathrm{~cd}^{-1}$. This frequency was refined by a second search between 8.5 and $8.8 \mathrm{c} \mathrm{d}^{-1}$ with a resolution of 1,000 , the new frequency being $8.67760 \mathrm{~cd}^{-1}$. In each case, the corresponding period to four decimal places was 0.1152 d . The data were then prewhitened for the refined frequency, and f2 (the second frequency sought) was found between start and end frequencies of 0 and $20 \mathrm{~cd}^{-1}$ with a resolution of 750 , yielding a frequency of $6.67333 \mathrm{~cd}^{-1}$. This frequency was refined by a second search between 6 and $7 \mathrm{~cd}^{-1}$ with a resolution of 1,000 , yielding a frequency of $6.66900 \mathrm{c} \mathrm{d}^{-1}$. In each case the corresponding period to four decimal places was 0.1499 d . The power spectra from these analyses for the light curve in white light are shown in Figure 4. As the power spectra for the V-magnitude light curve were identical, they are not shown. The two periods, 0.1152 d and 0.1499 d , are identical (to four decimal places) to those reported in the previous literature.

4. Discussion

The purpose of this study was to determine whether or not DSLR photometry in white light yielded valid data by comparing the results with photometry based on nontransformed data from the green channel of the DSLR sensor, and with photometry based on data from the green channel transformed to the Johnson V standard. Because only simple differential photometry could be achieved from the nontransformed data from the green channel and from white light data, no useful information about the color of the variable star could be gained. Therefore, analyses of the results were confined to parameters involving time, namely, the times of maximum of the light curve and period analysis using Fourier

Figure 4. peranso Lomb-Scargle power spectra of V703 Sco from white light images. The power spectra of V magnitude data were identical, and are not shown. In the following, f1 is the first discovered frequency and P1 its corresponding period; f 2 is the second discovered frequency and P 2 its corresponding period. $4 \mathrm{a}: \mathrm{fl}=8.67783 \mathrm{c} \mathrm{d}-1, \mathrm{P} 1=0.1152 \mathrm{~d}$, from $0-20 \mathrm{c} \mathrm{d}-1$ at a resolution of 800.4 b : refined frequency for $\mathrm{f} 1=8.6770 \mathrm{~cd}-1, \mathrm{P} 1=0.1152$, from $8.5-8.8 \mathrm{c}$ d-1 at a resolution of 1000.4 c : after prewhitening for 8.6770 $\mathrm{c} \mathrm{d}-1, \mathrm{f} 2=6.67333 \mathrm{c} \mathrm{d}-1, \mathrm{P} 2=0.1499 \mathrm{~d}$, from $0-20 \mathrm{c} d-1$ at a resolution of 750 . 4 d : refined frequency for $\mathrm{f} 2=6.66900 \mathrm{c} d-1, \mathrm{P} 2=0.1499 \mathrm{~d}$, from $6-7 \mathrm{c} \mathrm{d}-1$ at a resolution of 1000 .

Table 5. Times of maximum (TOM) of peaks 4 and 10 (from Tables 3 and 4 above) of the light curve of V703 Sco, remeasured by the Podgson method (see text of paper).

Peak	HJD TOM wl	HJD TOM VMag	wl TOM-VMag TOM (d)	wlTOM-VMag TOM (min)
4	2457522.082	2457522.081	0.001	1.44
10	2457549.966	2457549.966	0.0	0.0

Note: Abbreviations are as for Table 4.
decomposition. The amplitudes of the light curves for each night, and the ranges and standard deviations of the check star magnitude data for each night were also compared between transformed V magnitude data, non-transformed data from the green channel, and white light data.

When the TOM of the light curve were determined by fitting fifth-order polynomial expressions to the peaks, 13 of the 15 measured peaks gave similar results in white light and V magnitude, with the largest difference being 2.30 min . However, peaks 4 and 10 (from Table 1) had discrepancies of -6.34 min and 8.78 min , respectively, between the white light and V magnitude times, which are too large to be acceptable. In view of these results, the TOM were recalculated from light curve data plotted as center moving averages over three consecutive magnitude values. As in the case of the nonaveraged magnitude data large discrepancies between white light and V magnitude TOM were still present for peaks 4 and 10, whereas all of the other peaks had acceptable results (Table 3).

It was considered likely that the large discrepancies between TOM were based upon imprecision in the magnitude determinations near the peaks of the light curve, resulting in spurious assignment of the TOM based on the fitting of the fifthorder polynomial expressions in peranso. Therefore, the TOM of the peaks with the discrepant results for the raw magnitude data (not the moving average data) were recalculated using the Podgson method of bisected chords, a manual method requiring the use of curve fitting by hand. With the latter, the discrepancies between white light and V magnitude TOM became much less, the largest now being 1.44 min .

In order to set these results in the context of other studies which have published the TOM of light curves for the construction of $\mathrm{O}-\mathrm{C}$ (observed minus computed) diagrams of variable stars, the author's previously published work on the δ Scuti star ZZ Mic is considered. The range of $\mathrm{O}-\mathrm{C}$ values calculated from observations taken over a time of 9.3 d was 2.62 min . (Axelsen and Napier-Munn 2015). It is therefore concluded that the precision of the determination of TOM of light curve peaks from white light photometry would be sufficient for successful application to the study of variable stars using $\mathrm{O}-\mathrm{C}$ diagrams. However, in view of the unacceptably large differences between the TOM of white light and V magnitude data for 2 of 15 light curve peaks for V703 Sco, caution is required in the use of white light DSLR photometry. If this method is used for $\mathrm{O}-\mathrm{C}$ diagrams, it would be necessary to gather TOM data from several peaks over relatively short periods of time to ensure that the variance of the data is acceptable.

The final test was to compare results of Fourier analysis of V703 Sco white light data with the results of a similar analysis of data in V magnitude. The comparison clearly showed that the analyses were identical in all respects: the appearances of the power spectra, the dominant frequencies revealed before and after refining the frequency searches, and the outcome of a second frequency search after prewhitening for the first frequency. It is concluded that it is valid to carry out Fourier analysis of DSLR photometric data taken in white light.

Finally, it is necessary to consider the colors of the variable, comparison, and check stars used in this study. The B-V for

V703 Sco varies from 0.2 to 0.5 from the author's DSLR photometry in B and V. The B-V color indices of the comparison and check stars (HD 160927 and HD 160432) were 0.533 and 0.457 , respectively. The latter two values are relatively close to the range of $\mathrm{B}-\mathrm{V}$ values displayed by V703 Sco as it cycles through a period. Therefore, if DSLR photometry in white light is to be attempted with variable and comparison stars having markedly differing colors and thus markedly differing $\mathrm{B}-\mathrm{V}$ color indices, caution should be observed in the interpretation of the results, as it should not be assumed that the precision of the measurements would be similar to the precision described in the present paper.

5. Conclusions

A novel technique of DSLR photometry, involving analyzing images in white light, has been investigated using data obtained from a study of the high amplitude δ Scuti star V703 Sco. Images in white light can be used only to analyze variable star parameters involving time. Aperture photometry was performed on images taken in white light, and repeated on the same set of images to obtain non-transformed differential magnitudes from the green channel, and magnitudes transformed to the Johnson V system. Analysis indicates that the precision of white light photometry is slightly greater than the precision of photometry with non-transformed green channel data, and slightly greater than the precision of measurements in V magnitude. For the majority of peaks, the TOM of the light curves in white light and V magnitude differed by only small time intervals. Fourier analysis by the Lomb-Scargle method showed identical results for white light data and data in V magnitude. It is concluded that DSLR photometry of variable stars in white light is a valid technique for timing the peaks (and by inference the troughs) of light curves, and for Fourier analysis of pulsating variable stars, at least for variable and comparison stars having similar color indices.

References

AAVSO. 2016, The AAVSO DSLR Observing Manual, Version 1.4, AAVSO, Cambridge, MA (https://www.aavso.org/ dslr-observing-manual).
Axelsen, R. A. 2014a, J. Amer. Assoc. Var. Star Obs., 42, 37.
Axelsen, R. A. 2014b, J. Amer. Assoc. Var. Star Obs., 42, 44.
Axelsen, R. A. 2014c, J. Amer. Assoc. Var. Star Obs., 42, 287.
Axelsen, R. A. 4014d, J. Amer. Assoc. Var. Star Obs., 42, 292.
Axelsen, R. A. 2015, J. Amer. Assoc. Var. Star Obs., 43, 182.
Axelsen, R. A., and Napier-Munn, T. 2015, J. Amer. Assoc. Var. Star Obs., 43, 50.
Axelsen, R. A., and Napier-Munn, T. 2016, J. Amer. Assoc. Var. Star Obs., 44, 119.
Berry, R., and Burnell, J. 2011, "Astronomical Image Processing for Windows," version 2.4.0, provided with The Handbook of Astronomical Image Processing, Willmann-Bell, Richmond, VA.
Deshmukh, S. 2015, J. Amer. Assoc. Var. Star Obs., 43, 172.
Hoot, J. E. 2007, in The Society for Astronomical Sciences 26th Annual Symposium on Telescope Science, Society for Astronomical Sciences, Rancho Cucamonga, CA., 67.
Kloppenborg, B. K., Pieri, R., Eggenstein, H.-B., Maravelias, G., and Pearson, T. 2012. J. Amer. Assoc. Var. Star Obs., 40, 815.
Koen, C. 2001, Mon. Not. Roy. Aston. Soc., 321, 44.
Loughney, D. 2010, J. Br. Astron. Assoc., 120, 157.
Menzies, J. W., Cousins, A. W. J., Banfield, R.M., and Laing, J. D. 1989, S. Afr. Astron. Obs. Circ., 13, 1.

Oosterhoff, P. Th. 1966, Bull. Astron. Inst. Netherlands, 18, 140.

Percy, J. R. 2007, Understanding Variable Stars, Cambridge Univ. Press, New York, 62.
Ponsen, J. 1961, Bull. Astron. Inst. Netherlands, 15, 325.
Ponsen, J. 1963, Bull. Astron. Inst. Netherlands, 17, 29.
Richards, T. 2012, J. Amer. Assoc. Var. Star Obs., 40, 983.
Vanmuster, T. 2014, Light curve and period analysis software, Peranso V. 2.51 (http://www.peranso.com/).
Walker, S., Butterworth, N., and Pearce, A. 2015, J. Amer. Assoc. Var. Star Obs., 43, 227.

Inter-observer Photometric Consistency Using Optec Photometers

Tom Calderwood
1184 NW Mt. Washington Drive, Bend, OR 97703; tjc@cantordust.net
Jim Kay
26 Steeplebush Road, Shelburne, VT 05482; jimjanekay@msn.com
Scott Burgess
4 Rob Clark Street, Winterport, ME 04496; ScottAstroNut@aol.com

Erwin van Ballegoij
De Rogge 6, Heesch, 5384 XD, Netherlands; AAVSO.ID.BVE@HOME.NL
Received February 8, 2017; revised March 29, 2017; accepted March 30, 2017

Abstract

Four observers, over a wide geographic range, observe slowly-varying stars in Johnson B and V bands using Optec SSP-3 and SSP-5 photometers on telescopes of modest size. Significant corrections for transformation and extinction were applied to their data, and we find very close agreement among them. In paired same-night observations, the median absolute difference between observers was 7 mmag . For the two observers with the most measurements in common, we estimate a systematic difference of 3.2 mmag or less.

1. Background

According to Henden (2017), published evaluations of consistency among photoelectric photometry (PEP) observers practicing differential photometry are difficult to find. Landis et al. (1985) describe a two-observer project to determine time-of-maximum of V396 Per. Based upon fitted data, they claim about $\pm 3 \mathrm{mmag}$ rms deviation from the fit for each observer, and a systematic difference of about $\pm 1 \mathrm{mmag}$ between observers. However, no documentation for the fit is provided, and the authors note that the exact period (which would affect the fit) is not known. All the authors are now deceased, so no further details are available. This study was conducted in V band only, with transformation adjustments of approximately 1 mmag , and it is not clear if measured or assumed extinction coefficients were employed. In the authors' words, "Differential photometry of this accuracy was possible because every pertinent factor was nearly ideal." Key factors were the small color difference between variable and comparison, minor differential extinction, and small transformation coefficients. It appears that Landis owned a DC photomultiplier photometer at the time of the study (Landis 1984), while Louth had a pulsecounting photometer (Skillman 1980), but it is not certain if these were the instruments used.

Cortesi and Poretti (1993) describe PEP observations of 44 Tau from two sites. They estimate a difference of 8.5 mmag between the observers, again V band only, based upon a fit. Transformations, if applied, would have been very small, on account of $\Delta(\mathrm{B}-\mathrm{V})$ on the order of -0.007 (Tycho). It is not clear if extinction corrections were applied, and the authors note an ambiguity in the fit.

In Calderwood et al. (2015), two photoelectric observers operating simultaneously at the same location with closelymatched equipment achieved V-band measurements of common target stars with a median difference of 0.006 magnitude. Optec

SSP-3 photometers were used at a fairly dark mountain location, and transformation corrections greater than those found in the Landis study were employed.

In this study, we step beyond the 1985, 1993, and 2015 projects. Data were taken in both B and V bands, with transformation effected largely using measured color contrast, and extinction corrected largely using measured extinction coefficients. Data are compared on a same-night basis rather than a fit. The participants used a variety of instrumentation as shown in Table 1 (the SSP-3 device has a photodiode sensor, while the SSP-5 uses a photomultiplier tube (Optec 2016)). CTOA was at an altitude of approximately $1,000 \mathrm{~m}$, while the other observers were within 100 m of sea level. All locations had significant light pollution.

Table 1. Observers and equipment.

Observer	Location	Photometer	Filters	Optics
CTOA	Oregon	SSP-5	B,V	9.25" Schmidt-cassegrain
KJMB	Vermont	SSP-3	B,V	14" Schmidt-cassegrain
BSO	Maine	SSP-3	V	8.3" cassegrain
BVE	Netherlands	SSP-3	B,V	$10^{\prime \prime}$ Schmidt-cassegrain

2. Observations

Stars already of interest in the AAVSO Photoelectric Photometry (PEP) program (AAVSO 2016a) were selected for this study. Since simultaneous observations would not generally be possible, targets of modest short-term variability were chosen: α Com, P Cyg, W Boo, ρ Cas, and R Lyr. These were bright enough that observers with small apertures could participate. Data were taken between May and September 2016. Difficulties with weather and equipment limited the number of same-night pairs to 31, which are summarized in Table 2.

Table 2. Observation summary.

Star	B pairs	V pairs
α Com	1	1
W Boo	2	2
P Cyg	0	3
ρ Cas	8	13
R Lyr	0	1

Table 3. Example adjustments to ρ Cas instrumental magnitudes, in mmag.

Obs	RJD	1st ext $_{B}$	1st ext $_{V}$	2nd ext $_{B}$	xform $_{B}$	xform $_{V}$	net $_{B}$	net $_{V}$
CTOA	57645	-4	-2	-16	-4	24	-24	22
KJMB	57634	-3	-2	-16	-42	16	-61	14
BSO	57643	-	-3	-	-	9	-	6
BVE	57693	-2	-1	-14	-57	12	-73	11

Magnitudes were measured differentially using the PEP program comparison stars (AAVSO 2016b). The PEP protocol uses an alternating sequence of multiple comparison/variable samples (AAVSO 2016c), with the variable usually sampled three times, and sky samples accompanying each star sample. Individual differential magnitudes are computed for each variable sample, and the mean is taken as the reduced magnitude. The 1σ error is computed as the standard deviation of that mean. Two-color data were gathered by interleaving B and V samples in a single sequence.

3. Reductions

All data were reduced using a PYTHON program written by one of us. Instrumental magnitudes were adjusted for transformation, first-order differential extinction between the variable and comparison, and, likewise, for second-order extinction in B band. Assumed first-order extinction coefficients were used for BSO and BVE reductions, while CTOA and KJMB reductions almost always used measured extinctions. A priori, it was decided to establish an upper limit for acceptable errors. Any observation with a 1σ error greater than 0.015 was discarded (for the bright stars in this study, 0.015 is a large uncertainty). If either band's measurement in a two-band sequence failed this test, both bands were discarded. Whenever available, the measured $\Delta(\mathrm{b}-\mathrm{v})$ was used to calculate $\Delta(\mathrm{B}-\mathrm{V})$ to effect transforms, otherwise a catalog $\Delta(\mathrm{B}-\mathrm{V})$ was used $(\Delta(\mathrm{b}-\mathrm{v})$ was always available for second-order extinction calculations).

4. Problems and limitations

CTOA's system showed systematically bright B magnitudes, on the order of 40-60 mmag for R Lyr and P Cyg when compared to other observers. These excesses, as will be seen, are far greater than other inter-observer discrepancies. The B pairs involving CTOA for these two stars have been dropped, which partially accounts for the relative shortfall of B band data in this study.

While the target/comparison pairs collectively exhibited a considerable range of color contrast, no $\Delta(\mathrm{B}-\mathrm{V})$ was extreme. W Boo and ρ Cas, with contrasts of approximately 0.64 and

Figure 1. $|\Delta \mathrm{M}|$ histogram, all observers.

Figure 2. 2σ error budget histogram, all observers.

Figure 3. CTOA/KJMB $\Delta \mathrm{M}$ histogram.
-0.40 , were the most challenging in this respect. The stars were generally measured at low airmass ($\mathrm{X}<1.2$), which minimized the effects of first- and second-order extinction. Table 3 illustrates typical extinction and transformation adjustments for ρ Cas.

5. Evaluation

For comparison with the 2015 study, we first applied a 2σ overlap as a criterion for inter-observer consistency.

If the difference between a pair of magnitudes was less than or equal to the sum of their 2σ errors, we deemed them to be in agreement. The data are summarized in Table 4 and Figures 1 and 2 (both figures include the pairs that failed to agree). Twenty-nine of the thirty-one pairs achieved agreement, with the median absolute delta being 7 millimags. Note that on 57636 and 57641, all three of CTOA, KJMB, and BSO had V measurements of ρ Cas, and each pairwise comparison is included.

Table 4. Pairwise observation data.

$R J D$	Star	Band	Obs_{1}	JD Frac ${ }_{1}$	M_{1}	err ${ }_{1}$	Obs_{2}	JD Frac 2	M_{2}	err ${ }_{2}$	ΔM	$2 \cdot$ err $_{1+2}$	agree
57519	α Com	B	CTOA	0.739	4.783	0.003	KJMB	0.623	4.778	0.007	0.005	0.020	Y
57519	α Com	V	CTOA	0.740	4.332	0.004	KJMB	0.621	4.337	0.002	-0.005	0.012	Y
57573	W Boo	B	CTOA	0.761	6.429	0.006	KJMB	0.631	6.438	0.003	-0.009	0.018	Y
57573	W Boo	V	CTOA	0.762	4.744	0.002	KJMB	0.630	4.742	0.003	0.002	0.010	Y
57575	W Boo	B	CTOA	0.756	6.432	0.006	KJMB	0.652	6.429	0.003	0.003	0.018	Y
57575	W Boo	V	CTOA	0.756	4.739	0.001	KJMB	0.651	4.726	0.006	0.013	0.014	Y
57607	ρ Cas	B	CTOA	0.866	5.754	0.005	KJMB	0.676	5.747	0.003	0.007	0.016	Y
57607	ρ Cas	V	CTOA	0.866	4.475	0.002	KJMB	0.674	4.475	0.003	0.000	0.010	Y
57608	ρ Cas	B	CTOA	0.804	5.744	0.004	KJMB	0.825	5.744	0.004	0.000	0.016	Y
57608	ρ Cas	V	CTOA	0.804	4.469	0.004	KJMB	0.824	4.479	0.003	-0.010	0.014	Y
57634	ρ Cas	B	CTOA	0.825	5.692	0.002	KJMB	0.664	5.695	0.004	-0.003	0.012	Y
57634	ρ Cas	V	CTOA	0.825	4.446	0.002	KJMB	0.665	4.448	0.002	-0.002	0.008	Y
57636	ρ Cas	B	CTOA	0.749	5.688	0.001	KJMB	0.737	5.697	0.007	-0.009	0.016	Y
57636	ρ Cas	V	CTOA	0.749	4.451	0.001	KJMB	0.735	4.459	0.005	-0.008	0.012	Y
57636	ρ Cas	V	CTOA	0.749	4.451	0.001	BSO	0.618	4.451	0.002	0.000	0.006	Y
57636	ρ Cas	V	BSO	0.618	4.451	0.002	KJMB	0.735	4.459	0.005	-0.008	0.012	Y
57639	ρ Cas	B	CTOA	0.769	5.685	0.003	BVE	0.455	5.710	0.007	-0.025	0.020	N
57639	ρ Cas	V	CTOA	0.770	4.451	0.001	BVE	0.454	4.441	0.011	0.010	0.024	Y
57641	ρ Cas	B	CTOA	0.772	5.689	0.001	KJMB	0.592	5.682	0.002	0.007	0.006	N
57641	ρ Cas	V	CTOA	0.772	4.446	0.002	BSO	0.638	4.439	0.006	0.007	0.016	Y
57641	ρ Cas	V	CTOA	0.772	4.446	0.002	KJMB	0.594	4.446	0.003	0.000	0.010	Y
57641	ρ Cas	V	KJMB	0.594	4.446	0.003	BSO	0.638	4.439	0.006	0.007	0.016	Y
57643	ρ Cas	V	CTOA	0.798	4.447	0.003	BSO	0.569	4.446	0.007	0.001	0.020	Y
57644	ρ Cas	B	CTOA	0.780	5.691	0.001	KJMB	0.744	5.696	0.003	-0.005	0.008	Y
57644	ρ Cas	V	CTOA	0.781	4.446	0.004	KJMB	0.744	4.446	0.001	0.000	0.010	Y
57645	ρ Cas	B	CTOA	0.695	5.697	0.006	BVE	0.422	5.721	0.015	-0.024	0.042	Y
57645	ρ Cas	V	CTOA	0.696	4.452	0.002	BVE	0.421	4.463	0.004	0.011	0.012	Y
57643	R Lyr	V	CTOA	0.696	3.959	0.001	KJMB	0.585	3.957	0.001	0.002	0.004	Y
57608	P Cyg	V	CTOA	0.763	4.770	0.004	KJMB	0.751	4.765	0.001	0.005	0.010	Y
57641	P Cyg	V	CTOA	0.794	4.788	0.002	BSO	0.602	4.781	0.006	0.007	0.016	Y
57643	P Cyg	V	CTOA	0.717	4.802	0.008	BSO	0.535	4.788	0.001	0.014	0.018	Y

6. Statistical evaluation

CTOA and KJMB had 20 observations in common, which provided an opportunity for statistical analysis through a paired t test. The null hypothesis, H_{0}, is that the means of the difference of the pairs of observations is zero, or equivalently that the systematic error between the observations is not significant compared to the random error. The variances of the underlying distributions for each observer were not assumed to be the same, so we used the Welch t-test method of determining the t statistic, and degrees of freedom. The resulting p value is 0.80 , so we cannot reject the null hypothesis at our chosen significance level of 0.05 .

The actual sample mean of the differences between these observation pairs is 0.000 magnitude, with a median value of 0.000 and a standard deviation of 0.006 magnitude. The 95% confidence interval of the mean of the difference between two readings is -0.0032 mag to 0.0025 mag . Our interpretation of the confidence interval is that with 95% confidence the systematic difference between these two observers is less than 3.2 mmag for the stars observed.

We interpret the sample mean value as our best estimate of the systematic error between observations, with the standard deviation as our estimate of the random error. These estimates are with respect to internal consistency between the two observers. We make no estimates of systematic or random errors with respect to magnitudes in the UBV standard system.

Figure 3 summarizes the magnitude deltas for the 20 pairs, the median of which was 0 mmag.

7. Conclusion

It is clearly possible for well-calibrated observers using good technique to achieve highly consistent results using the Optec photometers. We do not wish to attach great importance to the specific value of the estimate of offset between CTOA and KJMB—individual millimags are significant in the calculations and rounding effects come into play. The point is that the number is quite small.

8. Future work

We wish to track down the cause of B band excess in CTOA measurements of the above-noted stars, which we believe are due to a systematic effect in the CTOA instrument. Since the conclusion of the study, weather conditions at the site have not permitted significant investigation of this problem.

9. Acknowledgements

The authors would like to thank Philip Kaaret for helpful suggestions in the preparation of this paper. The authors would also like to thank the referee for helpful feedback.

References

AAVSO. 2016a, Photoelectric Photometry Program (https:// www.aavso.org/content/aavso-photoelectricphotometry-pep-program).
AAVSO. 2016b, List of Target, Comparison, and Check Stars for PEP-V Observations (https://www.aavso.org/pep-starparm).
AAVSO. 2016c, The Photoelectric Photometry (PEP) Observing Program of the AAVSO: An Introduction (https://www.aavso.org/photoelectric-photometry-pep-observing-program-aavso-introduction).
Calderwood, T., Getz, E., McBratney, T., and Holcomb, E. 2015, J. Amer. Assoc. Var. Star Obs., 43, 241.

Cortesi, S., and Poretti, E. 1993, I.A.P.P.P. Commun., 50, 19.
Henden, A. 2017, private communication.
Landis, H. 1984, AAVSO Photoelectric Photometry Newsletter, March 1984.
Landis, H., Louth, H., and Hall, D. S. 1985, Inf. Bull. Var. Stars, No. 2662, 1.
Optec. 2016, SSP Photometer Series (http://optecinc.com/ astronomy/catalog/ssp/index.htm).
Skillman, B. 1980, AAVSO Photoelectric Photometry Newsletter, May 1980, 2.

Digitizing Olin Eggen's Card Database

Jack Crast

1784 Lisle Rd, Owego, NY 13827; jackcrast@gmail.com

George Silvis

194 Clipper Rd, Bourne, MA 02532; SGEO@GASilvis.net

Received October 31, 2016; revised December 20, 2016; accepted February 10, 2017

Abstract

The goal of the Eggen Card Database Project is to recover as many of the photometric observations from Olin Eggen's Card Database as possible and preserve these observations, in digital forms that are accessible by anyone. Any observations of interest to the AAVSO will be added to the AAVSO International Database (AID). Given to the AAVSO on long-term loan by the Cerro Tololo Inter-American Observatory, the database is a collection of over 78,000 index cards holding all Eggen's observations made between 1960 and 1990. The cards were electronically scanned and the resulting 108,000 card images have been published as a series of 2,216 PDF files, which are available from the AAVSO web site. The same images are also stored in an AAVSO online database where they are indexed by star name and card content. These images can be viewed using the eggen card portal online tool. Eggen made observations using filter bands from five different photometric systems. He documented these observations using 15 different data recording formats. Each format represents a combination of filter magnitudes and color indexes. These observations are being transcribed onto spreadsheets, from which observations of value to the AAVSO are added to the AID. A total of $506 \mathrm{U}, \mathrm{B}, \mathrm{V}, \mathrm{R}$, and I observations were added to the AID for the variable stars S Car and 1 Car. We would like the reader to search through the card database using the EGGEN CARD portal for stars of particular interest. If such stars are found and retrieval of the observations is desired, e-mail the authors, and we will be happy to help retrieve those data for the reader.

1. Introduction

Olin Jeuck Eggen was born on July 9, 1919, in Rock County, Wisconsin. He earned a B.A. from the University of Wisconsin in 1940. After serving in World War II as a civilian with the U.S. Air Force, U.S. Navy, and as a courier for the Office of Strategic Services (OSS), he returned to the University of Wisconsin and earned a Ph.D. in astronomy in 1948. He held staff positions at Lick Observatory, Royal Greenwich Observatory, California Institute of Technology, Mt. Wilson Observatory, Mt. Stromlo Observatory (as Director), Australian National University, and Cerro Tololo Inter-American Observatory (Freeman et al. 2000). Eggen was well known as a proponent of small-telescope science.

Eggen was an extremely prolific researcher, publishing some 400 papers during his fifty-year career, with articles being written up until his death in 1998 from a heart attack. However, Eggen published only a small part of the enormous amount of data he collected over his lifetime.

The Eggen Archive is held in the Steenbock Library at University of Wisconsin, Madison. The AAVSO is most interested in this untapped data resource. All his observations were handwritten onto index cards that he kept in his office. Often, when a visitor would ask a question about a star, he would look up the coordinates, go to his card file, and retrieve observations that he had made of that target.

In early 2007, the AAVSO contacted Cerro Tololo InterAmerican Observatory (CTIO) to find out what had happened to that card catalog, mainly because they were interested in some observations that Eggen had made on a variable star but had never published. CTIO had taken the cards out of Eggen's office upon his passing, and had placed them in storage at La Serena. Since they were not serving any useful purpose in
storage, CTIO Director Alistair Walker gave the AAVSO the entire collection of 78,000 cards on long-term loan.

The American Astronomical Society (AAS) helped with a Small Research Grant in 2007 to pay for the equipment to scan the cards. John Menke gave a grant for the publishing of the scans (Henden 2009).

2. Tools and methods

The Eggen cards are presently stored at AAVSO Headquarters (Figure 1). One of several cards for the variable star S Car is shown in Figure 2. On the left side of the card are UBV observations and on the right side are RI observations. This card contains a portion of a sequence of observations spanning multiple cards. Note that Eggen didn't record the observation times on this card. This was a common practice when observing stars not considered to be variable and for some long period variables.

This card will serve as an example throughout section 2 to show how cards in Eggen's database progress from card box to AID observations.

Figure 2. One of Eggen's cards documenting observations of the variable star S Car during 1971

Table 1. Arrangement of bundles and PDF files in box 8B. The card shown in Figure 2 is addressed as page 5 of PDF file 7, in bundle C, in box 8 B .

Box	Bundle	PDF Files
8B	A	$1,2,3,4,5,6,7,8,9,10$
	B	$1,2,3,4,5,6,7,8,9,10,11,12,13$
	C	$1,2,3,4,5,6,7,8,9,10$
	D	$1,2,3,4,5,6,7,8,9,10$

2.1. Card scanning and publishing the card images

During the summers of 2007 and 2009, assistants scanned the 78,000 cards, creating over 108,000 images. The organization of the card images was based upon the organization of the physical cards in their 64 boxes. Each box was assigned an alphanumeric identification code. Some boxes contained groups of bundled cards, 258 in total. These bundles were assigned alphabetical identifiers.

The images were saved into 2,216 PDF files, grouped into 258 bundles which in turn were grouped into 64 boxes (Table 1). Individual cards images are found by their Box/Bundle/PDF file/Page address (Silvis 2013). This is not a one-to-one mapping between physical card and card image since many cards have data written on both sides, requiring two card images to be generated. The card in Figure 2 has the address " $8 \mathrm{~B} / \mathrm{C} / 7 / 5$ ".

Loose cards within a box are documented in separate PDF files under the bundle identifier of null. These card images are addressed as Box//PDF file/Page.

2.2. Indexing and classifying the cards

George Silvis, the project leader, copied the card images from the 2,216 PDF files into a MYSQL database residing on an AAVSO server. Indexing and categorizing the card images were performed using the EGGEN CARD PORTAL also developed by Silvis.

The card images are addressed using the same Box/Bundle/ PDF file/Page system used for the original PDF files. Figure 3 shows the portal displaying card $8 \mathrm{~B} / \mathrm{C} / 7 / 5$, the card in Figure 2. The address has been entered in the input boxes in the line "Select Batch" line. This is a card search function which can be performed without needing special edit authorization. The " 76 " following the Request button shows the number of cards remaining in this PDF file after the card shown. The fields in the two "Edit Card:" lines cannot be altered without edit authority.

Card $8 \mathrm{~B} / \mathrm{C} / 7 / 5$ was retrieved from the database by entering " $8 \mathrm{~B} "$, "C", " 7 ", and " 5 " into the "Box", "Bundle", "PDF", and "Page" boxes found on the "Select Batch" line. In the two "Edit Card" lines the card's color, orientation, and classification are displayed. Here the card's color is the default value of white, its orientation is " 0 " since the card did not need any rotation to properly view it, and its classification of "P" as a card with usable photometric observations. The "Note" box holds any comments concerning the card. To the right under the "Star" label is the star name assigned to this card. Next to it are buttons to display the SIMBAD entry for this star and a button to remove the name. Below the buttons is an input box for additional names, if more than one star is identified on the card (Silvis 2016a).

When indexing card images, the user must sign onto the portal by entering their AAVSO observer identification code and an edit authority password assigned by Silvis. The user enters the box and bundle codes (also assigned by Silvis) into the boxes labeled "Box" and "Bundle" on the second line. Next, "N", standing for not indexed, is entered into the "Classification" box, and finally the user presses the Request button. The first unindexed card image is then displayed.

Figure 3. Card 8B/C/7/5 (Figure 2) as displayed on the EGGEN CARD PORTAL. Only a portion of the card is shown (Silvis 2016a).

Each card may have multiple star designations written upon it. These designations may all be synonyms referring to the same star, a list of unrelated star names each referring to an individual star, or a mixture of the two. The user enters one of these names into the box next to the Check button, found to the right of the card image. Pressing the Check button starts a search by SIMBAD, the results of which will appear in a new browser tab.

The SIMBAD entry, if one is found for the name being checked, is verified to be Eggen's intended star by cross checking the star's coordinates, cross checking additional names on the card against the list of alternative names provided by SIMBAD, V band magnitude, spectral type, or other clues provided by the card. If the name represents the intended star, then pressing the "Add" button will assign the star name to the card.

If the card holds multiple star designations, then these names also need to be verified. Unrelated designations are added to the list of names assigned to the card while synonymous names are not.

Initially each card image is assigned the default classification " N ". When the card is indexed, the classification is reassigned to one of the following:

B Blank card.
S Special (not a star card, but some other document).
R To be reviewed (Let the supervisor look at this one).
P A card which identifies a single star or a list of unrelated stars. At least one star is found either by name or by coordinates in SIMBAD, and has usable photometric observations.

O A card for which none of the star references found on the card are found in SIMBAD.

D A card which identifies a single star or a list of unrelated stars. For each star found either by name or by coordinates in SIMBAD there are no usable observational data on the card.

Several properties of the card such as the color of the card, the card's orientation, and its new classification are entered on the first of two "Edit Card:" lines. Comments are typed into the "Note" box, above the card image. The card's classification is updated, by pressing the Update button, which replaces the existing " N " class with the new classification. The next card is displayed by pressing the "Next" button and the process is repeated.

The portal also provides a search function to find all cards indexed under a particular star identifier or one of the star's alternative names. No special authorization is needed to use the search feature. Enter the star identifier into the "Star name" box and press the "Request" button.

The reader may wish to use the EGGEN CARD portal for the following example and gain a little hands-on experience with this database tool.

As an example, let's look for all the card images indexed under the name of "S Car". Enter "S Car" into the "Star name" box and click the "Request" button. The portal will display the first card in the sequence of cards indexed under "S Car" or one of its alternative star names. The star name displayed on each card in the sequence may differ from the search name.

To the right of the "Prev" button is displayed the text string "1 12B/E/1/37 77914" Displaying respectively the place of the card in the stack, the card's address in the database, and the cardkey which is discussed later. Continuing to press the

Next button will increment through each card in the sequence, eventually arriving at the card addressed as $8 \mathrm{~B} / \mathrm{C} / 7 / 5$, the card shown in Figures 2 and 3.

The number of cards found in the search is displayed to the right of the "Request" button. The "Prev" and "Next" buttons, found above the displayed card, allow the viewer to move through the card sequence.

The number " 86406 " shows this card was the 86,406 th image to be produced from the scanning of the original cards. This number is the cardkey number.

Both the cardkey and card address can be used to find an individual card image. The line labeled "Select batch" contains input boxes for entering the address of a specific card.

Finding the correct star from the designation(s) written on the card can be a problem. These Identifiers were written by Eggen for his own use and in his own handwriting. While the identification may have been clear to him it often is not clear to the person indexing the card. Often Eggen recorded more than one designation for the same star on the same card. This can be of great help if the handwriting is legible. Often when indexing a card with multiple designations we select the most legible and search upon that identifier.

Many cards have only a partial identifier such as " 509 ", which could stand for HR 509, HD 509, LTT 509, and so on. The person indexing must query all of the possible names in SIMBAD. By comparing the star's coordinates, U, B, V, R, and I band magnitudes, and other star related data provided by SIMBAD against the data recorded on the card one hopes to determine which name is the correct one. If no coordinates were specified on the card, then the person indexing must choose between stars using whatever clues remain on the card. The magnitudes within the observations, a note on the spectral type, or a finder chart on the card may be the key to correct identification.

More information on star name conventions used by Eggen and how they relate to the catalogues used by SIMBAD can be found on the AAVSO web page https://www.aavso.org/content/ eggen-card-instructions.
2.3. Identifying patterns in observational data and the corresponding photometric systems

While indexing these cards, we are always looking for new patterns in the recording of observational data. Fourteen different patterns used to record observational data have been found. The associated photometric systems have been identified for eleven of these patterns.

The photometric systems used by Eggen and recorded on his cards are as follows:

Eggen's UBV system, an equivalent version of the 1953 Johnson and Morgan system (Eggen and Sandage 1960; Bessell 2005).

Eggen's 102,65,62 narrowband system, which was used alongside his UBV system to make measurements of stars of type K5 and later. This system was used before Eggen's adoption of the RI system (Kron et al. 1953; Eggen 1967).

Eggen's RI system, based upon standard stars defined by Kron with additional standard stars of later spectral type added by Eggen (Eggen 1965; Bessell 2005).

Eggen's uvby β system, which while originally based upon

Table 2. The observational data formats found on Eggen's cards (Crast 2016).

Format Name	Associated Photometric(s) System	Map of Observational Data (on Card) ${ }^{1}$	Corresponding Magnitude, Color Index, or Other Value	Remarks	Example Card ${ }^{2}$
UBV	Eggen UBV	$\mathrm{Md}< \pm \mathrm{d}>< \pm \mathrm{d}>$	$\mathrm{V}(\mathrm{B}-\mathrm{V})(\mathrm{U}-\mathrm{B})$	note 4	5B/A/4/14
RI	Eggen RI	$\mathrm{Md}< \pm \mathrm{d}>$	R (R-I)		5B/A/4/14
VRIphase	Eggen UBV \& RI	Md Md \pm d d	V R (R-I) phase		19A/B/5/12
phaseVRI	Eggen UBV \& RI	d Md Md \pm d	phase V R (R-I)		D1/C/5/28
102,65,62	Eggen 102,65,62	$\pm \mathrm{d} \pm \mathrm{d} \mathrm{Md}$	(65-62) (102-65) (102)	$(102) \equiv \mathrm{m}_{102}$	B6//1/16
102,65	Eggen 102,65,62	"[" Md $\pm \mathrm{d}$ "]"	(102) (102-65)	$(102) \equiv \mathrm{m}_{102}$	6A/A/15/9
uvby β	Eggen uvby β^{6}	$\mathrm{Md} \pm \mathrm{i} \pm \mathrm{i} \pm \mathrm{i}<\mathrm{Md}>$	$V^{\prime}(b-y)_{1}{ }^{\prime} m_{1}{ }^{\prime} c_{1}{ }^{\prime} H \beta^{\prime}$	not $\mathrm{cc}^{4,6}$	D1/C/1/1
uvby β (cc)	Eggen uvby β^{7}	$\mathrm{Md} \pm \mathrm{i} \pm \mathrm{i} \pm \mathrm{i}<\mathrm{Md}>$	$\mathrm{V}(\mathrm{b}-\mathrm{y})_{1} \mathrm{M}_{1} \mathrm{C}_{1} \mathrm{H} \beta$	$\mathrm{cc}^{4,7}$	B6//34/16
DDO	note 3	$\mathrm{Md} \pm \mathrm{i} \pm \mathrm{i} \pm \mathrm{i}$	(48) na na na	$(48) \equiv \mathrm{m}_{48}{ }^{5}$	B3//27/10
$\mathrm{H} \beta$	Eggen uvby β	Md	H β		B6//1/29
[.2.] ${ }^{\text {n }}$	unknown	"["Md $\pm \mathrm{d}$ "] ${ }^{\text {"n }}$	na na ${ }^{\text {n }}$	note 9	B6//32/26
[.4.]	unknown	"[" Md $\pm \mathrm{i} \pm \mathrm{I} \pm \mathrm{I}$ "]"	na na na na		B6//34/15
[.4.] ${ }^{\text {n }}$	unknown	"["Md $\pm \mathrm{i} \pm \mathrm{i} \pm \mathrm{i}$ "] ${ }^{\text {n }}$	na na na na ${ }^{\text {n }}$	note 9	B6//34/16
$\mathrm{M} \pm \pm \mathrm{M} \pm$	note 8	$\mathrm{Md} \pm \mathrm{i} \pm \mathrm{i} \pm \mathrm{i} \mathrm{Md} \pm \mathrm{i}$	(48) na na na na na		B5//8/42
[1/2 D T]	uvby β	$\left[\begin{array}{l} \mathrm{Md} \pm \mathrm{i} \pm \mathrm{i} \pm \mathrm{i}<\mathrm{Md}>\text { date }<\text { time }> \\ \mathrm{Md} \pm \mathrm{i} \pm \mathrm{i} \pm \mathrm{i}<\mathrm{Md}> \end{array}\right]$	$\left[\begin{array}{l} V^{\prime}(b-y)_{1}{ }^{\prime} m_{1}^{\prime} c_{1}^{\prime} H \beta^{\prime} \text { date } \text { <time> } \\ V^{\prime}(b-y)_{1}^{\prime} m_{1}^{\prime} c_{1}^{\prime} H \beta \end{array}\right]$	note 10	C4/C/3/61

Notes:

1. Some records may vary with respect to color index format, such as $\pm i$ instead of $\pm d$.
2. Example cards can be viewed by entering the card address into the EGGEN CARD PORTAL.
3. David Dunlap Observatory (DDO) The identity of the three indexes in the DDO data and what processing is still required to convert these values to those in

Eggen's published tables are not fully understood. Therefore, labels have not been assigned yet.
4. Value of first Md is close to or equal to SIMBAD's V magnitude.
5. Value of first Md is greater than SIMBAD's V magnitude by 0.1 magnitude or more.
6. Color indexes and $H \beta$ are those computed using Strömgren's uvby system. Eggen's transformation equations need to be applied. The observational data are not computationally complete (cc).
7. Color indexes and Hß have been transformed using Eggen's equations prior to recording on card. Denoted "cc" for computationally complete observational data.
8. The $M \pm \pm \pm$ portion is a DDO observation. The remaining $M \pm$ has not been resolved. The identity of the three indexes in the DDO data and what processing is still needed to convert these values to those in Eggen's published tables are not fully understood. Therefore, labels have not been assigned yet.
9. "fn" represents the value of the exponent n.
10. Two observations within a single set of square brackets, sharing a single date and optional time. Both observations use either the Eggen uvby β or uvby $\beta(c c)$ system. The top observation is for the star named on the card. The bottom observation is for a nearby star.
the uvby β system introduced by Bengt Strömgren and extended by David Crawford, was later adopted as an independent system due to a defective v filter (Strömgren 1966; Crawford and Perry 1966; Eggen 1976).

The David Dunlap Observatory (DDO) system, developed by Robert D. McClure and Sidney van den Bergh. Eggen also added his own standard stars to the original list to extend this system for later spectral type stars (McClure and van den Bergh 1968; Eggen 1990).

Table 2 summarizes the data recording patterns (data formats) found on the cards. Except for the [1/2 D T] format, the date and time of the observation are not shown as part of the data formats. The map of each format shows the ordering of the data values and the expected data type of each value. The key word here is "expected," as some observations will have data values of a type not matching what is specified below. The most common data type variation is the use of decimal numbers when integers are expected and vice-versa. Some measurements are not always included within the observation and are defined as optional. Some observations use literal characters such as "[]" to distinguish between data records with similar mappings.

The last column of Table 2 contains the addresses of sample cards which contain observations in the data format named in column 1. These cards may be viewed using the EGGEN CARD portal discussed in section 2.1.

Table 3 defines the terms used in Table 2.
2.4. Recording and organizing the observations using spreadsheets

Spreadsheets allow us to enter the observational data in an orderly manner using the mappings defined in Table 2 as guides for photometric system identification and correct data input. The spreadsheet also allows us to manipulate the data to make it suitable for wEBOBS input, and document the observations for future reference.

The "Eggen Photometry" workbook served as a proof of concept to demonstrate that we could transcribe UBV and RI observations from the cards of a few variable stars and add those observations into the AID. The workbook was developed using google sheets software. The workbook is stored in the Google cloud which allows shared access to the sheet by multiple users. Anyone with a link to the workbook may view it on a read-only basis. Users must log into a Google account to gain edit access. Access authority and resource contention, when multiple users are accessing the workbook at the same time, is handled by the Google cloud. S Car and 1 Car were the first stars to be entered into AID. A total of $300 \mathrm{U}, \mathrm{B}, \mathrm{V}, \mathrm{R}$, and I observations were entered for S Car and 206 for 1 Car (Silvis 2015).
"Eggen Card Database: Photometric Observations Ver 3.0" is our current workbook. It too was written using google sheets and is stored in the Google cloud. Its goal is to capture as many photometric observations as possible as they are recorded on the cards, regardless of photometric system.

Table 3. Terms used in Tables 2, 4, and 5 (Crast 2016).

Term	Description	Term

Problems such as observations having illegible date or data, or difficulty figuring out the correct data format are frequently encountered. Our spreadsheet allows entry of observations with data, date, or time problems. These problem observations are marked with a generic format of ".?." so that they can still be recorded and flagged for later review and resolution.

In addition, all card images which do not contain usable observational data are recorded on the spreadsheet under a generic "NoObs" format.

Each sheet of the database workbook is assigned to one star and each row of that sheet documents an observation. The photometric system(s) used for each observation are identified by the data format, other comments, or labels on the cards. Each row holds:

The address of the image, within the card image database, that has the observation.

The card's color; white is the default if no value is assigned.
The date and time of the observation in both Gregorian calendar and Julian date formats. All dates and times are displayed in GMT.

The format in which the observational data were written on the card.

Input observational data which are entered onto the input area using the chosen format.

The results of any numerical calculation, or reordering of the input data.

The AAVSO observer code of the person entering the observation.

Comments concerning the observational data.
Status on whether the observation(s) has been entered into the AID.

The input record generated for webobs for entry of the observation(s) into the AID.

The data type for each input and output cell within a row is defined by assigning each row a data format chosen using Table 2 as a guide. The chosen format is assigned to the row by selecting it from a menu showing valid format entries (see the Card Data Format column in Figure 4). By selecting the same format in the heading menu the correct data mapping
will be displayed in the headings. The column headings show the data type terms and corresponding magnitude, index, or other value.

Table 4 lists the data formats and the heading for each cell in the "Data From Cards" section of a star's spreadsheet. Note that the uvby β format has two variations. The difference between the two is the application of Eggen's transformation equations to the observational data. The uvby β observations still require the application of Eggen's transformation equations to produce the values shown in Eggen's papers. For the uvby β (cc) observations Eggen's transformations were applied before Eggen recorded the observations on the card. The uvby $\beta(\mathrm{cc})$ observations are termed computationally complete (cc).

Table 5 displays the layout of the output section of a row for each data format. The output section is shown in Figure 4 under the heading "Data for WebObs".

Figures 4 and 5 display portions of the S Car sheet showing observations transcribed from the card in Figure 2. Figure 5 shows the dates and times of observation in Gregorian and Julian formats. When no time of observation is recorded on the card then only the date is entered in to the "Date Time (UTC)" cell and the time of observation defaults to midnight. This default is also reflected in the Julian Date (JD) cell. Observational dates can be entered on the spreadsheet in either Gregorian or JD format to match the format recorded on the card. A spreadsheet routine fills in the blank "Date Time" or "JD" cell and processes the "Data from Cards" observation records into the proper form for storage in the corresponding "Data for WebObs" section shown in Figure 4.

Since any star recorded on an Eggen card may be referenced by more than one identifier we needed to choose one identifier for the spreadsheet which is in common use and is compatible with the conventions for star name use in astronomical papers. The source we chose was the main star identifier returned from an identifier query of the SIMBAD Astronomical Database. This identifier also becomes the sheet name. The brief description and V band magnitude from the identifier query are also entered on the sheet.

Table 4. Mapping of observational data values onto spreadsheet input data columns (Crast 2016).

Format NameUBV	Map of Spreadsheet Input Data							Corresponding Magnitude, Color Index, or Value						
	Md	< ${ }_{\text {d }}$ >	$< \pm d>$	-	-	-	-	V	(B-V)	(U-B)	-	-	-	-
RI	Md	< d >	-	-	-	-	-	R	(R-I)	-	-	-	-	-
VRIphase	Md	Md	$\pm \mathrm{d}$	d	-	-	-	V	R	(R-I)	phase	-	-	-
phaseVRI ${ }^{8}$	d	Md	Md	\pm d	-	-	-	phase	V	R	(R-I)	-	-	-
102,65,62	\pm d	$\pm \mathrm{d}$	Md	-	-	-	-	(65-62)	(102-65)	(102)	-	-	-	-
102,65	Md	$\pm \mathrm{d}$	-	-	-	-	-	(102)	(65-62)	-	-	-	-	-
uvby $\beta^{1,7}$	Md	$\pm \mathrm{i}$	$\pm \mathrm{i}$	$\pm \mathrm{i}$	<Md>	-	$<\mathrm{t}>$	V^{\prime}	$(\mathrm{b}-\mathrm{y})_{1}{ }^{\text {, }}$	$\mathrm{m}_{1}{ }^{\prime}$	$\mathrm{c}_{1}{ }^{\prime}$	H ${ }^{\prime}$	-	tag^{3}
uvby β (cc) ${ }^{1,7}$	Md	$\pm \mathrm{i}$	$\pm \mathrm{i}$	$\pm \mathrm{i}$	<Md>	-	$<t>$	V	(b-y) ${ }_{1}$	M_{1}	C_{1}	H β	-	tag^{3}
DDO	Md	$\pm \mathrm{i}$	$\pm \mathrm{i}$	$\pm \mathrm{i}$	-	-	$<t>$	(48)	na	na	na	-	-	tag^{3}
H β	Md	-	-	-	-	-	-	H β	-	-	-	-	-	-
[.note 2.] ${ }^{\text {n }}$	Md	\pm d	-	-	d	-	$<t>$	na	na	na	na	$]^{\mathrm{n} 2}$	na	tag^{3}
[.note 4.]	Md	$\pm \mathrm{i}$	$\pm \mathrm{i}$	$\pm \mathrm{i}$	-	-	$<t>$	na	na	na	na	na	na	tag^{3}
[.note 4.] ${ }^{\text {n }}$	Md	$\pm \mathrm{i}$	$\pm \mathrm{i}$	$\pm \mathrm{i}$	d	-	$<t>$	na	na	na	na	$]^{\text {n2 }}$	na	tag^{3}
$\mathrm{M} \pm \pm \pm \mathrm{M} \pm$	Md	$\pm \mathrm{i}$	$\pm \mathrm{i}$	$\pm \mathrm{i}$	Md	$\pm \mathrm{d}$	$<t>$	(48)	na	na	na	na	na	$t a g^{3}$
.?. ${ }^{5}$	t	t	t	t	t	t	t	text ${ }^{4}$						
NoObs ${ }^{6}$	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Notes:

1. uvby β-Eggen's transformation calculations must be applied to observation values $V^{\prime},(b-y)^{\prime}, m_{1}{ }^{\prime}$, and $c_{1}{ }^{\prime} ;$ uvby β (cc)—Eggen's transformation calculations were applied to observation values before observation was recorded on the card.
2. The value of the numerical exponent n.
3. Enter a date tag if one exists.
4. Write values into cells in corresponding order as they appear on card.
5. The .?. format is a generic format for identifying and recording problem observations requiring more investigation.
6. NoObs is a generic description for a card which has no usable photometric observations. This is used to record cards indexed under the star name which would otherwise be undocumented due to a lack of observations. Such cards would include those with attached paper tapes and cards with comparisons between Eggen's observations and observations made by other astronomers.
7. Each observation from a [1/2 D T] observation pair (see Table 2) is recorded on its respective star sheet using the uvby β or uvby β (cc) format. The same date and time (if the time exists) are recorded for each star. The comment section of each record is updated to record the bundling of the two observations.
8. A variation of the VRIphase format requiring spreadsheet headings and processing changes.

Table 5. Mapping of processed values onto the spreadsheet output data columns (Crast 2016).

Format Name		Map of Spreadsheet Output Data						Corresponding Magnitude, Color Index, or Other Value						
UBV	Md	Md	Md	-	-	-	-	U	B	V	-	-	-	-
RI	-	-	-	Md	Md	-	-	-	-	-	R	I	-	-
VRIphase \& phaseVRI	-	-	Md	Md	Md	d	-	-	-	V	R	I	note2	-
102,65,62	Md	$\pm \mathrm{d}$	\pm d	-	Md	-	-	(102)	(65-62)	(102-65)	-	I^{1}	-	-
102,65	Md	$\pm \mathrm{d}$	-	-	-	-	-	(102)	(65-62)	-	-	$\mathrm{I}_{\mathrm{J}}{ }^{1}$	-	-
uvby β \& uvby $\beta(\mathrm{cc})^{3}$	-	-	Md	$\pm \mathrm{i}$	$\pm \mathrm{i}$	$\pm \mathrm{i}$	Md	-	-	V	(b-y)	M_{1}	C_{1}	H β
DDO	Md	$\pm \mathrm{d}$	\pm d	$\pm \mathrm{d}$	-	-	-	(48)	(45-48)	(42-45)	(41-42)	-	-	-
[.note 2.] ${ }^{\text {n }}$	na													
[.note 4.]	na													
[.note 4.] ${ }^{\text {n }}$	na	-												
H β	Md	-	-	-	-	-	-	H β	-	-	-	-	-	-
$\mathrm{M} \pm \pm \pm \mathrm{M} \pm$	Md	$\pm \mathrm{d}$	$\pm \mathrm{d}$	\pm d	Md	Md	-	(48)	(45-48)	(42-45)	(38-42)	na	na	-
.?	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Notes:

1. $I_{J}=0.15 \times m_{102}$ (Eggen 1976)
2. phase
3. The uvby $\beta(c c)$ format signals to the spreadsheet processing routine that Eggen's transformation calculations have been applied to this observation prior to its recording. No further calculations need to be performed for this datum.

NOTE: Data Entry Completed																
Data for WebObs							Card Data Format	Data From Cards							M - magnitude \pm - color index d-decimal i-integer \boldsymbol{n}-decl <>-optional A\|B-A or B	
\mathbf{U}	B	V	--	--	--	--	click \mathbf{T} below for menu	V	(B-V)	(U-B)	--	--	--	--	\lll Color Mag/Index	logged
							UBV	Md	< \pm d>	$< \pm d>$	--	--	--	--	<<< Format	by
9.695	7.92	5.99					UBV	5.99	1.93	1.775						SGEO
10.215	8.4	6.47					UBV	6.47	1.93	1.815						SGEO
			5.5	6.67			RI	5.5	1.17							SGEO
			4.88	5.88			RI	4.88	1							SGEO
			4.48	5.07			RI	4.48	0.59							SGEO
			4.19	4.68			RI	4.19	0.49							SGEO
			4.3	4.8			RI	4.3	0.5							SGEO
			4.81	5.69			RI	4.81	0.88							SGEO
			503	6.02			RI	503	0.99							SGEO

Figure 4. Observations transcribed from Eggen card 8B/C/7/5 (Figure 2) to the S Car spreadsheet in Eggen Card Database: Photometric Observations. The UBV column headings for the "Data for WebObs" and "Data from Cards" columns were set by choosing "UBV" from the menu displayed by clicking on the " $\boldsymbol{\nabla}$ " symbol in the highlighted cell. The uppermost yellow block on the right side of the spreadsheet is a short summary of the data type terms documented in Table 3 (Crast and Silvis 2016).

1	Star name:		S Car	Variable Star of Mira C	NOTE: Data Entry Completed				
2	V magnitude:		5.710	query SIMBAD					
3	This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France.				Data for Webobs				
4					U	B	V	--	--
5	Card Coord	$\begin{aligned} & \text { Card } \\ & \text { Color } \end{aligned}$	JD	Date Time (UTC)					
26	8B/C/7/5	W ${ }^{\text {- }}$	2441085.50000	14/05/1971 00:00:00	9.695	7.92	5.9		
27	8B/C/7/5	W ${ }^{\text {T}}$	2441093.50000	22/05/1971 00:00:00	10.215	8.4	6.		
28	8B/C/7/5	W ${ }^{\top}$	2441003.50000	21/02/1971 00:00:00				5.5	6.67
29	8B/C/7/5	W *	2441022.50000	12/03/1971 00:00:00				4.88	5.88
30	8B/C/7/5	W *	2441035.50000	25/03/1971 00:00:00				4.48	5.07
31	8B/C/7/5	W ${ }^{\text {v }}$	2441049.50000	08/04/1971 00:00:00				4.19	4.68
32	8B/C/7/5	$W{ }^{~}{ }^{\text {T}}$	2441065.50000	24/04/1971 00:00:00				4.3	4.8
33	8B/C/7/5	W ${ }^{*}$	2441086.50000	15/05/1971 00:00:00				4.81	5.69
34	8B/C/7/5	W ${ }^{\text {- }}$	2441094.50000	23/05/1971 00:00:00				5.03	6.02

Figure 5. The time and date section for the same observations of S Car shown in Figure 4. The card color is specified as "W" for white. The "query SIMBAD" cell holds a hyperlink to the SIMBAD identifier query result for the "Star name:" entry. The headings in rows $1-5$ are frozen in position, allowing the viewer to scroll through the data rows and still view or change the column headings above the "Data from Cards" and "Data for WebObs" sections (Crast and Silvis 2016).

3. Results

The indexing phase of the project is nearing completion. As this paper was being written another box holding another 500 cards was discovered. These cards have yet to be scanned and organized into PDF files.

A minimum of 15,503 cards have been classified as " P ". This number will increase as the cards classified "D", "R", and "O" are re-examined later.

The PDF files discussed in section 2.1 can be viewed and downloaded from the AAVSO at the Olin Eggen Observation Cards web page.

AAVSO Bulletin stars also found in the card database are listed in Table 6. No search for AAVSO comparison and check stars has been performed yet.

Six data formats-UBV, RI, uvby β, uvby β (cc), VRIphase, and phaseVRI-hold observations in the U, B, V, R, and I bands that can be added to the AID. The remaining unmapped formats may also hold useful observational data for AID as well.

The Eggen Card Database workbook contains 53 star sheets in various stages of completion. Most of the sheets document observations of standard stars for Eggen's customized
photometric systems. Data from these sheets are used for computing the transformation constants for Eggen's uvby β system and the transformation coefficients for standardizing his DDO observations. See Appendices 1-3 in the "Eggen Card Database: Photometric Observations" workbook for documentation. The uvby β system transformation constants have been computed and are used when processing uvby β formatted observational data

4. Future work

In the next phase of this project we will:

1. Begin the extraction of the photometric observations from the cards and entering them into AID. Priority will go to AAVSO-related stars and special requests from the astronomical community.
2. Continue to identify new data formats and variations of currently identified formats.
3. Create expanded documentation concerning what types of stars are recorded within Eggen's database.
4. Start to identify variable, comparison, and check stars in AID that have usable data in Eggen's card database.

Table 6. AAVSO Bulletin stars found in Eggen's card database (Silvis 2016b).

R And	R Cnc	V Cet	R Dra	T Hya	T Nor	W Pup	R Tri
T And	V Cnc	W Cet	T Eri	X Hya	R Oct	S Pyx	S Tuc
SV And	W Cnc	Z Cet	R Gem	RU Hya	R Oph	R Ret	T Tuc
R Aql	R CVn	o Cet	S Gem	R Leo	V Oph	R Sgr	R UMa
R Aqr	T CVn	S Col	V Gem	R LMi	X Oph	RR Sgr	S UMa
T Aqr	R CMi	T Col	T Gru	R Lep	Z Oph	RU Sgr	T UMa
W Aql	S CMi	R Com	S Her	S Lib	RU Oph	S Sco	Y Vel
S Aql	R Car	S CrB	T Her	U Lib	R Ori	RR Sco	R Vir
R Ari	S Car	V CrB	U Her	RS Lib	S Ori	RS Sco	RU Vir
S Ari	R Cas	R Cyg	W Her	S Lup	U Ori	RZ Sco	S Vir
R Aur	V Cas	S Cyg	RS Her	R Lyn	S Pav	S Scl	SS Vir
W Aur	T Cen	U Cyg	RU Her	W Lyr	R Peg	T Scl	SU Vir
X Aur	W Cen	RS Cyg	SS Her	S Mic	T Phe	UScl	R Vul
R Boo	X Cen	RT Cyg	R Hor	V Mon	V Phe	V Scl	
S Boo	T Cep	RU Cyg	T Hor	X Mon	S Pic	X Scl	
S Cam	R Cet	$\chi \mathrm{Cyg}$	R Hya	Y Mon	T Pic	R Ser	
X Cam	U Cet	S Del	S Hya	RR Mon	R Psc	U Ser	

5. Continue to investigate and implement a plan for organizing the many stars named in Eggen's card database. Multiple database workbooks will be needed at some point in time.
6. Develop a more secure storage system for our data and processing software. The cloud is not the most secure means of storing critical data. We need to bring these data back under the control and security of the AAVSO.
7. Begin education of a small team to transcribe observations from the portal to the spreadsheet-based database.
8. Improve the quality control process over observational data transcription and with any data processing being performed by the spreadsheet programs.
9. Continue our investigative work on the unresolved observational data formats and make the necessary changes to the spreadsheet database.
10. Improve the performance of our spreadsheet's processing and organizing tasks. Our implementation of reading from and writing to the spreadsheet significantly degrades performance. The necessity of working within the Google cloud and not locally on the user's home system can degrade performance greatly when network traffic or cloud usage is heavy.
11. Begin work to modify the workbook to make the data more accessible to the AAVSO Variable Star Index (VSX).

5. Summary

Our intentions for now are to leave the transcription of data to the spreadsheet to a few volunteers familiar with the use of the Eggen Portal, the identification of the various data formats on the cards, and the data entry procedures for the spreadsheets. A small team can more easily deal with the ongoing changes being made to the spreadsheet code and The Eggen Card Database Reference and still ensure that we are producing a quality product.

What we would like the reader to do is search through the card database using the EGGEN CARD PORTAL for stars of interest to them. If such stars are found and retrieval of the observations is desired, please e-mail George Silvis, the team leader, and we will be happy to help retrieve those data. Questions concerning
the data formats and use of the spreadsheet should be directed to Jack Crast.

If you would like to become part of the Eggen team, send an e-mail to George Silvis.

6. Acknowledgements

This research has made use of:

- The SIMBAD database, operated at CDS, Strasbourg, France
- The Asiago Database on Photometric Systems (ADPS)
- The WEBDA database, operated at the Department of Theoretical Physics and Astrophysics of Masaryk University.

Without the generosity of the American Astronomical Society (AAS) and John Menke we could not have scanned the cards or published the PDF files.

Table 7. Volunteers who have indexed the Eggen cards.

Volunteer	Cards
Carlos Adib	40
Wendy Bauer	783
Michael Cook	1
Jack Crast	18,960
Duane Dedrickson	6,754
Mark de Jong	1,183
Michael Geldorp	319
Richard Glassner	48
David Jackson	99
James Kay	90
Kris Larsen	2
Ranald McIntosh	260
Bob Neuman	96
John Ritzel	37,013
Jeff Robertson	327
Michael Saladyga	5,275
Ed Schmidt	3,436
George Silvis	22,852
Elizabeth Waagen	1,679
Glen Ward	1,337
Doug Welch	606
Paul York	782

Arne Henden and Matt Templeton of the AAVSO have been very generous with their ongoing technical help.

We of course wish to thank those who volunteered to tackle the difficult job of indexing cards; they are listed in Table 7.

References

Bessell, M. S. 2005, Annu. Rev. Astron. Astrophys., 43, 293.
Crast, J. 2016, "The Eggen Card Database Reference" (http:// www.crastjh.com/aavso/).
Crast, J., and Silvis, G. 2016,"Eggen Card Database: Photometric Observations" (http://www.crastjh.com/aavso/).
Crawford, D. L., and Perry, C. L. 1966, Astron. J., 71, 206.
Eggen, O. J. 1965, Astron. J., 70, 19.
Eggen, O. J. 1967, Astrophys. J., Suppl. Ser., 14, 307.
Eggen, O. J. 1976, Publ. Astron. Soc. Pacific, 88, 732.
Eggen, O. J. 1990, Publ. Astron. Soc. Pacific, 102, 242.
Eggen, O. J., and Sandage, A. R. 1960, Mon. Not. Roy. Astron. Soc., 120, 79.

Freeman, K. C., Whitford, A., Greenstein, J., Kron, K., Kron, G., and Trimble, V. 2000, Bull. Amer. Astron. Soc., 32, 1661.

Henden, A. 2009, "Digitizing Olin Eggen's Legacy" (https:// www.aavso.org/olin-eggen-observation-cards).
Kron, G. E., White, H. S., and Gascoigne, S. C. B. 1953, Astrophys. J., 118, 502.
McClure, R., and van den Bergh, S. 1968, Astron. J., 73, 313.
Silvis, G. 2013, "Eggen Card Project" (https://www.aavso.org/ content/eggen-card-project).
Silvis, G. 2015, "Eggen Photometry" (http://www.crastjh. com/aavso/).
Silvis, G. 2016a, THE EGGEN CARD PORTAL (http://www.gasilvis. com/EggenCard2/).
Silvis, G. 2016b, "Bulletin stars that have Eggen cards" (http:// www.crastjh.com/aavso/).
Strömgren, B. 1966, Annu. Rev. Astron. Astrophys., 4, 433.

Recent Maxima of $\mathbf{8 2}$ Short Period Pulsating Stars

Gerard Samolyk
P.O. Box 20677, Greenfield, WI 53220; gsamolyk@wi.rr.com

Received January 24, 2017; accepted January 24, 2017

Abstract

This paper contains times of maxima for 82 short period pulsating stars (primarily RR Lyrae and δ Scuti stars). This represents the CCD observations received by the AAVSO Short Period Pulsator (SPP) section in 2016.

1. Recent observations

Table 1 contains times of maxima calculated from CCD observations made by participants in the AAVSO's Short Period Pulsator (SPP) section. This list will be web-archived and made available through the AAVSO ftp site at ftp:ftp.aavso.org/ public/datasets/gsamoj451.txt. The error estimate is included. RR Lyr stars in this list, along with data from earlier AAVSO publications, are included in the GEOS database at: http://rrlyr.irap.omp.eu/dbrr/. This database does not include δ Scuti stars. These observations were reduced by the writer using the peranso program (Vanmunster 2007). Column F indicates the filter used; a "C" indicates a clear filter.

The linear elements in the General Catalogue of Variable Stars (Kholopov et al. 1985) were used to compute the O-C values for most stars. For a few exceptions where the GCVS elements are missing or are in significant error, light elements from another source are used: RZ Cap and DG Hya (Samolyk 2010), and VY LMi (Henden and Vidal-Sainz 1997).

2. Errata

The following times of maxima published in Samolyk (2016) contain a one-day error.

SW And	57347.3755	T. Arranz
SW And	57351.3525	T. Arranz

Corrected times of maxima are included in this paper.

References

Henden, A. A., and Vidal-Sainz, J. 1997, Inf. Bull. Var. Stars, No. 4535, 1.
Kholopov, P. N., et al. 1985, General Catalogue of Variable Stars, 4th ed., Moscow.
Samolyk, G. 2010, J. Amer. Assoc. Var. Stars, 38, 12.
Samolyk, G. 2016, J. Amer. Assoc. Var. Stars, 44, 66.
Vanmunster, T. 2007, PERANSO period analysis software (http:// www.peranso.com).

Table 1. Recent times of maxima of stars in the AAVSO Short Period Pulsator program.

Star	$\begin{gathered} J D(\max) \\ \text { Hel. } \\ 2400000+ \end{gathered}$	Cycle	$O-C$	F	Observer	Error	Star	$\begin{gathered} J D(\max) \\ \text { Hel. } \\ 2400000+ \end{gathered}$	Cycle	$O-C$	F	Observer	Error
SW And	57348.3755	88668	-0.4506	V	T. Arranz	0.0005	YZ Aqr	57601.8444	40290	0.0791	V	G. Samolyk	0.0015
SW And	57352.3525	88677	-0.4541	V	T. Arranz	0.0005	YZ Aqr	57601.8458	40290	0.0805	V	R. Sabo	0.0021
SW And	57601.7894	89241	-0.4628	V	G. Samolyk	0.0011	YZ Aqr	57658.6915	40393	0.0773	V	G. Samolyk	0.0009
SW And	57620.8020	89284	-0.4682	V	K. Menzies	0.0015	AA Aqr	57633.7663	60578	-0.1632	V	G. Samolyk	0.0011
SW And	57674.7611	89406	-0.4672	V	R. Sabo	0.0009	AA Aqr	57669.6907	60637	-0.1633	V	G. Samolyk	0.0011
SW And	57698.6417	89460	-0.4697	V	G. Samolyk	0.0009	BO Aqr	57679.6674	23138	0.2130	V	G. Samolyk	0.0018
XX And	57595.8210	25608	0.2750	V	G. Samolyk	0.0017	BR Aqr	57623.8476	41479	-0.2097	V	G. Samolyk	0.0008
XX And	57642.7985	25673	0.2739	V	N. Simmons	0.0019	CY Aqr	57633.7543	382142	0.0141	V	G. Samolyk	0.0004
XX And	57650.7482	25684	0.2734	V	G. Samolyk	0.0015	CY Aqr	57633.8158	382143	0.0146	V	G. Samolyk	0.0004
XX And	57660.8668	25698	0.2735	V	R. Sabo	0.0014	CY Aqr	57633.8769	382144	0.0147	V	G. Samolyk	0.0003
XX And	57697.7299	25749	0.2765	V	R. Sabo	0.0011	CY Aqr	57633.9376	382145	0.0143	V	G. Samolyk	0.0005
ZZ And	57621.8029	59137	0.0295	V	K. Menzies	0.0013	CY Aqr	57642.7272	382289	0.0145	V	G. Samolyk	0.0003
ZZ And	57706.6468	59290	0.0300	V	K. Menzies	0.0015	CY Aqr	57642.7884	382290	0.0146	V	G. Samolyk	0.0004
AC And	57606.5840	47873	-0.1829	V	T. Arranz	0.0014	CY Aqr	57642.8498	382291	0.0150	V	G. Samolyk	0.0007
AT And	57602.7960	24735	-0.0108	V	G. Samolyk	0.0011	CY Aqr	57671.5986	382762	0.0147	V	G. Samolyk	0.0006
AT And	57610.8241	24748	-0.0026	V	G. Samolyk	0.0022	CY Aqr	57671.6592	382763	0.0142	V	G. Samolyk	0.0005
AT And	57634.8807	24787	-0.0057	V	G. Samolyk	0.0025	CY Aqr	57671.7205	382764	0.0145	V	G. Samolyk	0.0005
AT And	57673.7494	24850	-0.0026	V	R. Sabo	0.0013	CY Aqr	57671.7815	382765	0.0144	V	G. Samolyk	0.0005
AT And	57699.6599	24892	-0.0026	V	G. Samolyk	0.0017	DN Aqr	57668.6328	46143	0.0420	V	G. Samolyk	0.0011
DY And	57630.8420	35747	-0.1750	V	K. Menzies	0.0011	TZ Aur	57398.6340	95733	0.0157	V	N. Simmons	0.0008
DY And	57711.6522	35881	-0.1785	V	K. Menzies	0.0012	TZ Aur	57679.8567	96451	0.0160	V	G. Samolyk	0.0008
DY And	57728.5380	35909	-0.1791	V	K. Menzies	0.0018	TZ Aur	57686.9057	96469	0.0149	V	K. Menzies	0.0008
SW Aqr	57595.8294	70756	-0.0035	V	G. Samolyk	0.0008	TZ Aur	57724.8984	96566	0.0151	V	K. Menzies	0.0006
SW Aqr	57635.7903	70843	-0.0020	V	G. Samolyk	0.0007	BH Aur	57643.8917	32652	0.0056	V	G. Samolyk	0.0011
SW Aqr	57699.6329	70982	-0.0025	V	G. Samolyk	0.0008	BH Aur	57679.9240	32731	0.0068	V	G. Samolyk	0.0012
TZ Aqr	57640.6720	35175	0.0125	V	G. Samolyk	0.0006	BH Aur	57700.9040	32777	0.0066	V	R. Sabo	0.0008
TZ Aqr	57660.6652	35210	0.0139	V	R. Sabo	0.0016	RS Boo	57433.8306	41510	0.0004	V	K. Menzies	0.0006

Table 1. Recent times of maxima of stars in the AAVSO Short Period Pulsator program, cont.

Star	$\begin{gathered} J D(\max) \\ \text { Hel. } \\ 2400000+ \end{gathered}$	Cycle	$O-C$	F	Observer	Error	Star	$\begin{gathered} J D(\max) \\ \text { Hel. } \\ 2400000+ \end{gathered}$	Cycle	$O-C$	F	Observer	Error
RS Boo	57460.6184	41581	-0.0029	V	T. Arranz	0.0006	KV Cnc	57512.3903	9464	-0.0309	V	T. Arranz	0.0009
RS Boo	57462.5033	41586	-0.0047	V	T. Arranz	0.0005	KV Cnc	57513.3931	9466	-0.0321	V	T. Arranz	0.0011
RS Boo	57463.6357	41589	-0.0043	V	T. Arranz	0.0005	KV Cnc	57525.4129	9490	-0.0603	V	T. Arranz	0.0008
RS Boo	57465.5239	41594	-0.0028	V	T. Arranz	0.0005	KV Cnc	57526.4130	9492	-0.0642	V	T. Arranz	0.0006
RS Boo	57472.6894	41613	-0.0067	V	T. Arranz	0.0007	KV Cnc	57527.4136	9494	-0.0676	V	T. Arranz	0.0005
RS Boo	57484.7659	41645	-0.0051	V	K. Menzies	0.0006	KV Cnc	57528.4161	9496	-0.0691	V	T. Arranz	0.0004
RS Boo	57485.5211	41647	-0.0046	V	T. Arranz	0.0006	KV Cnc	57529.4201	9498	-0.0691	V	T. Arranz	0.0005
RS Boo	57495.7098	41674	-0.0040	V	G. Samolyk	0.0008	KV Cnc	57531.4276	9502	-0.0696	V	T. Arranz	0.0005
RS Boo	57496.8465	41677	0.0007	V	K. Menzies	0.0008	SS CVn	57409.8932	37172	-0.3944	V	K. Menzies	0.0011
RS Boo	57528.5409	41761	-0.0014	V	T. Arranz	0.0006	SS CVn	57477.8739	37314	-0.3637	V	K. Menzies	0.0008
RS Boo	57547.4041	41811	-0.0052	V	T. Arranz	0.0005	RV Cap	57607.7855	52987	-0.0884	V	G. Samolyk	0.0021
RS Boo	57553.4427	41827	-0.0040	V	T. Arranz	0.0006	RZ Cap	57598.8368	15496	0.0015	V	R. Sabo	0.0011
RS Boo	57559.4834	41843	-0.0007	V	T. Arranz	0.0005	VW Cap	57604.8207	102447	0.2265	V	G. Samolyk	0.0035
RS Boo	57567.4055	41864	-0.0027	V	T. Arranz	0.0005	YZ Cap	57602.7733	50732	0.0473	V	G. Samolyk	0.0012
RS Boo	57587.3959	41917	-0.0113	V	T. Arranz	0.0006	AN Cap	57579.8145	6627	-0.0065	V	G. Samolyk	0.0012
RS Boo	57590.4191	41925	-0.0068	V	T. Arranz	0.0007	AN Cap	57659.6913	6739	0.0020	V	G. Samolyk	0.0015
RS Boo	57593.4350	41933	-0.0096	V	T. Arranz	0.0006	RR Cet	57631.8981	44212	0.0140	V	R. Sabo	0.0022
ST Boo	57502.8565	61581	0.0877	V	K. Menzies	0.0009	RU Cet	57658.8273	30416	0.1238	V	G. Samolyk	0.0011
ST Boo	57511.5651	61595	0.0842	V	T. Arranz	0.0007	RU Cet	57668.7950	30433	0.1248	V	G. Samolyk	0.0010
ST Boo	57518.4095	61606	0.0834	V	T. Arranz	0.0007	RV Cet	57390.5542	29318	0.2620	V	G. Samolyk	0.0021
ST Boo	57602.4189	61741	0.0836	V	T. Arranz	0.0009	RV Cet	57649.8885	29734	0.2607	V	G. Samolyk	0.0017
ST Boo	57607.3988	61749	0.0852	V	T. Arranz	0.0012	RV Cet	57659.8480	29750	0.2458	V	R. Sabo	0.0012
SW Boo	57494.8611	29061	0.4610	V	G. Samolyk	0.0009	RV Cet	57669.8201	29766	0.2434	V	G. Samolyk	0.0012
SW Boo	57566.7600	29201	0.4660	V	R. Sabo	0.0012	RX Cet	57659.8705	30563	0.3290	V	G. Samolyk	0.0011
SW Boo	57572.4073	29212	0.4644	V	T. Arranz	0.0011	RZ Cet	57406.5196	46023	-0.2105	V	G. Samolyk	0.0014
SW Boo	57573.4348	29214	0.4649	V	T. Arranz	0.0009	RZ Cet	57663.8664	46527	-0.2115	V	G. Samolyk	0.0017
SW Boo	57591.4126	29249	0.4692	V	T. Arranz	0.0007	TY Cet	52314.5591	2742	-0.0115	V	G. Samolyk	0.0048
SW Boo	57592.4389	29251	0.4684	V	T. Arranz	0.0009	TY Cet	52581.6121	3567	0.0056	V	G. Samolyk	0.0039
SW Boo	57610.4125	29286	0.4686	V	T. Arranz	0.0007	TY Cet	52602.6511	3632	0.0054	V	G. Samolyk	0.0032
SZ Boo	57494.8201	57103	0.0101	V	G. Samolyk	0.0009	TY Cet	53672.7431	6938	0.0112	V	G. Samolyk	0.0027
SZ Boo	57588.4056	57282	0.0108	V	T. Arranz	0.0006	XX Cyg	57531.6511	96958	0.0050	V	G. Samolyk	0.0008
TV Boo	57409.8945	104941	0.0877	V	K. Menzies	0.0009	XX Cyg	57531.7855	96959	0.0045	V	G. Samolyk	0.0008
TV Boo	57450.8726	105072	0.1205	V	K. Menzies	0.0017	XX Cyg	57557.6792	97151	0.0041	V	G. Samolyk	0.0005
TV Boo	57464.6057	105116	0.1010	V	T. Arranz	0.0011	XX Cyg	57557.8143	97152	0.0043	V	G. Samolyk	0.0009
TV Boo	57481.5074	105170	0.1245	V	T. Arranz	0.0015	XX Cyg	57564.6924	97203	0.0043	V	G. Samolyk	0.0007
TV Boo	57510.5747	105263	0.1238	V	T. Arranz	0.0015	XX Cyg	57564.8265	97204	0.0036	V	G. Samolyk	0.0008
TV Boo	57552.4287	105397	0.0948	V	T. Arranz	0.0009	XX Cyg	57579.6616	97314	0.0035	V	G. Samolyk	0.0007
TV Boo	57559.6425	105420	0.1198	V	K. Menzies	0.0015	XX Cyg	57595.7105	97433	0.0034	V	G. Samolyk	0.0009
TV Boo	57603.3766	105560	0.0956	V	T. Arranz	0.0019	XX Cyg	57595.8458	97434	0.0039	V	G. Samolyk	0.0006
TW Boo	57447.9166	57408	-0.0884	V	K. Menzies	0.0007	XZ Cyg	57501.7529	28669	-2.5094	V	G. Samolyk	0.0008
TW Boo	57476.6593	57462	-0.0884	V	N. Simmons	0.0009	XZ Cyg	57528.8000	28727	-2.5309	V	G. Samolyk	0.0009
UU Boo	57486.8679	46840	0.3017	V	R. Sabo	0.0009	XZ Cyg	57528.8022	28727	-2.5287	V	H. Smith	0.0009
UU Boo	57539.4140	46955	0.3019	V	T. Arranz	0.0006	XZ Cyg	57542.8101	28757	-2.5218	V	G. Samolyk	0.0009
UU Boo	57560.4334	47001	0.3030	V	T. Arranz	0.0007	XZ Cyg	57549.8093	28772	-2.5231	V	R. Sabo	0.0016
UY Boo	57489.8507	24051	0.8880	V	R. Sabo	0.0015	XZ Cyg	57556.8129	28787	-2.5200	V	G. Samolyk	0.0008
UY Boo	57495.7147	24060	0.8945	V	N. Simmons	0.0011	XZ Cyg	57559.6117	28793	-2.5214	V	T. Arranz	0.0004
UY Boo	57527.6123	24109	0.9011	V	G. Samolyk	0.0011	XZ Cyg	57561.4804	28797	-2.5195	V	T. Arranz	0.0007
UY Cam	57398.5283	81760	-0.0924	V	G. Samolyk	0.0019	XZ Cyg	57564.7420	28804	-2.5248	V	G. Samolyk	0.0009
UY Cam	57398.7928	81761	-0.0950	V	G. Samolyk	0.0016	XZ Cyg	57566.6056	28808	-2.5280	V	T. Arranz	0.0005
UY Cam	57684.7939	82832	-0.0962	V	G. Samolyk	0.0028	XZ Cyg	57567.5399	28810	-2.5271	V	T. Arranz	0.0006
RW Cnc	57436.8045	32676	0.2160	V	G. Samolyk	0.0009	XZ Cyg	57568.4710	28812	-2.5294	V	T. Arranz	0.0005
RW Cnc	57733.9379	33219	0.2203	V	K. Menzies	0.0009	XZ Cyg	57579.6641	28836	-2.5371	V	G. Samolyk	0.0011
TT Cnc	57390.0167	30962	0.1294	V	R. Sabo	0.0015	XZ Cyg	57581.5248	28840	-2.5432	V	T. Arranz	0.0005
TT Cnc	57428.8665	31031	0.1012	V	R. Sabo	0.0018	XZ Cyg	57583.3925	28844	-2.5423	V	T. Arranz	0.0006
VZ Cnc	57436.6569	98334	0.0158	V	G. Samolyk	0.0008	XZ Cyg	57595.5302	28870	-2.5388	V	T. Arranz	0.0006
VZ Cnc	57436.8428	98335	0.0234	V	G. Samolyk	0.0007	XZ Cyg	57602.5389	28885	-2.5306	V	T. Arranz	0.0006
VZ Cnc	57446.6422	98390	0.0128	V	G. Samolyk	0.0011	XZ Cyg	57603.4724	28887	-2.5305	V	T. Arranz	0.0006
KV Cnc	57450.5988	9341	-0.0764	V	T. Arranz	0.0004	XZ Cyg	57609.5359	28900	-2.5341	V	T. Arranz	0.0005
KV Cnc	57453.6144	9347	-0.0728	V	T. Arranz	0.0004	XZ Cyg	57610.4683	28902	-2.5351	V	T. Arranz	0.0006
KV Cnc	57457.6356	9355	-0.0676	V	T. Arranz	0.0005	XZ Cyg	57611.4004	28904	-2.5364	V	T. Arranz	0.0006
KV Cnc	57474.7541	9389	-0.0171	V	R. Sabo	0.0027	XZ Cyg	57614.6672	28911	-2.5365	V	G. Samolyk	0.0011
KV Cnc	57487.7680	9415	-0.0552	V	R. Sabo	0.0018	XZ Cyg	57616.5275	28915	-2.5430	V	T. Arranz	0.0006
KV Cnc	57507.3788	9454	-0.0224	V	T. Arranz	0.0016	XZ Cyg	57676.7229	29044	-2.5519	V	H. Smith	0.0007
KV Cnc	57509.3829	9458	-0.0263	V	T. Arranz	0.0012	DM Cyg	57559.7339	35672	0.0820	V	K. Menzies	0.0009
KV Cnc	57510.3853	9460	-0.0279	V	T. Arranz	0.0013	DM Cyg	57566.8734	35689	0.0839	V	R. Sabo	0.0009
KV Cnc	57511.3878	9462	-0.0294	V	T. Arranz	0.0011	DM Cyg	57586.6070	35736	0.0840	V	T. Arranz	0.0006

Table 1. Recent times of maxima of stars in the AAVSO Short Period Pulsator program, cont.

Star	$\begin{gathered} J D(\max) \\ \text { Hel. } \\ 2400000+ \end{gathered}$	Cycle	$O-C$	F	Observer	Error	Star	$\begin{gathered} J D(\max) \\ \text { Hel. } \\ 2400000+ \end{gathered}$	Cycle	$O-C$	F	Observer	Error
DM Cyg	57590.8040	35746	0.0824	V	R. Sabo	0.0009	AR Her	57605.3755	34364	-1.0137	V	T. Arranz	0.0007
DM Cyg	57592.4844	35750	0.0834	V	T. Arranz	0.0007	AR Her	57611.5013	34377	-0.9983	V	T. Arranz	0.0014
DM Cyg	57594.5857	35755	0.0854	V	T. Arranz	0.0007	AR Her	57613.3987	34381	-0.9810	V	T. Arranz	0.0008
DM Cyg	57597.5266	35762	0.0873	V	T. Arranz	0.0007	DL Her	57541.6928	32678	0.0494	V	G. Samolyk	0.0012
DM Cyg	57600.4624	35769	0.0841	V	T. Arranz	0.0006	DL Her	57557.6641	32705	0.0467	V	G. Samolyk	0.0012
DM Cyg	57601.7212	35772	0.0833	V	R. Sabo	0.001	DY Her	57437.9194	161463	-0.0312	V	K. Menzies	0.0005
DM Cyg	57605.5027	35781	0.0860	V	T. Arranz	0.0007	DY Her	57484.8862	161779	-0.0320	V	K. Menzies	0.0005
DM Cyg	57607.6009	35786	0.0849	V	T. Arranz	0.0006	DY Her	57495.8847	161853	-0.0322	V	R. Sabo	0.0008
DM Cyg	57611.7979	35796	0.0833	V	R. Sabo	0.0009	DY Her	57541.6643	162161	-0.0310	V	G. Samolyk	0.0006
DM Cyg	57613.4780	35800	0.0840	V	T. Arranz	0.0007	DY Her	57541.8123	162162	-0.0317	V	G. Samolyk	0.0006
DM Cyg	57622.7142	35822	0.0833	V	R. Sabo	0.0011	DY Her	57543.7446	162175	-0.0316	V	R. Sabo	0.0007
DM Cyg	57624.8146	35827	0.0844	V	K. Menzies	0.001	LS Her	57484.8612	127725	-0.0006	V	K. Menzies	0.0012
DM Cyg	57627.7551	35834	0.0859	V	R. Sabo	0.0013	LS Her	57542.7835	127976	-0.0110	V	N. Simmons	0.0025
DM Cyg	57659.6655	35910	0.0869	V	R. Sabo	0.0008	SZ Hya	57423.8188	31168	-0.2964	V	G. Samolyk	0.0012
RW Dra	57524.8155	40972	0.2292	V	G. Samolyk	0.0009	SZ Hya	57429.7640	31179	-0.2608	V	G. Samolyk	0.0013
RW Dra	57541.6648	41010	0.2476	V	G. Samolyk	0.0011	UU Hya	57421.9633	34251	0.0037	V	G. Samolyk	0.0011
RW Dra	57594.3896	41129	0.2653	V	T. Arranz	0.0006	DG Hya	57406.8903	6672	0.0180	V	G. Samolyk	0.0016
RW Dra	57601.4631	41145	0.2521	V	T. Arranz	0.0008	DH Hya	57422.8337	53674	0.1003	V	G. Samolyk	0.0009
RW Dra	57609.4070	41163	0.2235	V	T. Arranz	0.0009	DH Hya	57473.6917	53778	0.1025	V	N. Simmons	0.0011
RW Dra	57629.3723	41208	0.2576	V	T. Arranz	0.0008	RR Leo	57451.8456	31292	0.1525	V	G. Samolyk	0.0008
XZ Dra	57526.8457	32736	-0.1341	V	G. Samolyk	0.0009	SS Leo	57473.7307	25054	-0.1034	V	G. Samolyk	0.0009
XZ Dra	57569.7358	32826	-0.1287	V	G. Samolyk	0.0008	ST Leo	57490.7291	61859	-0.0197	V	R. Sabo	0.0008
XZ Dra	57622.6210	32937	-0.1347	V	G. Samolyk	0.0008	TV Leo	57451.8300	30334	0.1292	V	G. Samolyk	0.0012
SV Eri	57680.8343	31000	1.0369	V	G. Samolyk	0.0018	TV Leo	57455.8658	30340	0.1279	V	R. Sabo	0.0015
SV Eri	57743.6412	31088	1.0297	V	G. Samolyk	0.0021	WW Leo	57445.7345	37428	0.0477	V	G. Samolyk	0.0012
BB Eri	57423.6097	31346	0.2960	V	G. Samolyk	0.0011	AA Leo	57498.7483	29904	-0.1068	V	R. Sabo	0.0015
BB Eri	57750.7407	31920	0.3055	V	G. Samolyk	0.0012	VY LMi	57502.6292	13333	0.0176	V	K. Menzies	0.0015
RX For	57424.6287	29454	-0.0449	V	G. Samolyk	0.0009	U Lep	57698.8493	28112	0.0444	V	G. Samolyk	0.0011
RX For	57668.9246	29863	-0.0504	V	G. Samolyk	0.0016	SZ Lyn	57411.7092	160014	0.0363	V	G. Samolyk	0.0008
RR Gem	57423.4842	40439	-0.5642	V	T. Arranz	0.0007	SZ Lyn	57411.8287	160015	0.0352	V	G. Samolyk	0.0008
RR Gem	57686.8844	41102	-0.5809	V	K. Menzies	0.0009	SZ Lyn	57433.5245	160195	0.0348	V	K. Menzies	0.0008
RR Gem	57719.8522	41185	-0.5899	V	G. Samolyk	0.0006	SZ Lyn	57436.5389	160220	0.0358	V	G. Samolyk	0.0006
TW Her	57482.8540	89934	-0.0158	V	R. Sabo	0.0010	SZ Lyn	57436.6602	160221	0.0365	V	G. Samolyk	0.0005
TW Her	57494.8410	89964	-0.0168	V	N. Simmons	0.0007	SZ Lyn	57436.7804	160222	0.0362	V	G. Samolyk	0.0006
TW Her	57496.8383	89969	-0.0175	V	K. Menzies	0.0006	SZ Lyn	57436.9019	160223	0.0372	V	G. Samolyk	0.0008
TW Her	57528.8080	90049	-0.0158	V	G. Samolyk	0.0007	SZ Lyn	57442.6868	160271	0.0364	V	R. Sabo	0.0013
TW Her	57577.5576	90171	-0.0174	V	T. Arranz	0.0004	SZ Lyn	57494.6387	160702	0.0377	V	G. Samolyk	0.0007
TW Her	57583.5520	90186	-0.0170	V	T. Arranz	0.0005	SZ Lyn	57524.6530	160951	0.0389	V	G. Samolyk	0.0007
TW Her	57585.5504	90191	-0.0166	V	T. Arranz	0.0007	SZ Lyn	57676.8892	162214	0.0394	V	G. Samolyk	0.0008
TW Her	57587.5479	90196	-0.0171	V	T. Arranz	0.0006	SZ Lyn	57686.7710	162296	0.0374	V	G. Samolyk	0.0008
TW Her	57591.5440	90206	-0.0170	V	T. Arranz	0.0006	SZ Lyn	57686.8914	162297	0.0372	V	G. Samolyk	0.0007
TW Her	57593.5416	90211	-0.0174	V	T. Arranz	0.0005	SZ Lyn	57696.8959	162380	0.0374	V	G. Samolyk	0.0006
TW Her	57599.5360	90226	-0.0170	V	T. Arranz	0.0006	SZ Lyn	57701.7170	162420	0.0371	V	G. Samolyk	0.0007
TW Her	57615.5193	90266	-0.0177	V	T. Arranz	0.0006	SZ Lyn	57701.8375	162421	0.0370	V	G. Samolyk	0.0005
VX Her	57499.9284	78506	-0.0529	V	R. Sabo	0.0013	SZ Lyn	57701.9581	162422	0.0371	V	G. Samolyk	0.0006
VX Her	57586.4455	78696	-0.0566	V	T. Arranz	0.0008	SZ Lyn	57736.6715	162710	0.0364	V	G. Samolyk	0.0006
VX Her	57606.4829	78740	-0.0556	V	T. Arranz	0.0008	SZ Lyn	57736.7916	162711	0.0360	V	G. Samolyk	0.0007
VZ Her	57495.8373	47026	0.0799	V	K. Menzies	0.0007	RR Lyr	57494.9216	25706	-0.4003	V	G. Samolyk	0.0009
VZ Her	57603.7198	47271	0.0821	V	R. Sabo	0.0009	RR Lyr	57556.7029	25815	-0.4076	V	G. Samolyk	0.0012
VZ Her	57630.5793	47332	0.0816	V	K. Menzies	0.0006	RZ Lyr	57506.8174	31929	-0.0640	V	K. Menzies	0.0009
AR Her	57487.9249	34114	-0.9573	V	R. Sabo	0.0014	RZ Lyr	57552.8500	32019	-0.0432	V	R. Sabo	0.0021
AR Her	57511.8481	34165	-1.0055	V	G. Samolyk	0.0012	RZ Lyr	57569.7117	32052	-0.0525	V	G. Samolyk	0.0017
AR Her	57520.8182	34184	-0.9660	V	R. Sabo	0.0016	CX Lyr	57706.4744	39951	1.5270	V	K. Menzies	0.0016
AR Her	57527.8685	34199	-0.9661	V	G. Samolyk	0.0011	KM Lyr	57477.8725	42297	-0.1998	V	K. Menzies	0.0012
AR Her	57538.6339	34222	-1.0113	V	G. Samolyk	0.0011	V340 Lyr	57624.6998	47426	-0.0355	V	K. Menzies	0.0021
AR Her	57547.5932	34241	-0.9825	V	T. Arranz	0.0012	ST Oph	57524.8286	64612	-0.0259	V	G. Samolyk	0.0009
AR Her	57548.5490	34243	-0.9668	V	T. Arranz	0.0012	AV Peg	57594.9204	35362	0.1743	V	R. Sabo	0.0009
AR Her	57550.8942	34248	-0.9717	V	R. Sabo	0.0019	AV Peg	57614.8316	35413	0.1763	V	G. Samolyk	0.0009
AR Her	57558.4233	34264	-0.9631	V	T. Arranz	0.0008	BH Peg	57614.7991	28471	-0.1926	V	G. Samolyk	0.0008
AR Her	57560.7616	34269	-0.9749	V	G. Samolyk	0.0009	BH Peg	57675.7430	28566	-0.1430	V	G. Samolyk	0.0015
AR Her	57563.5769	34275	-0.9798	V	T. Arranz	0.0006	DY Peg	57646.5819	180244	-0.0160	V	G. Samolyk	0.0005
AR Her	57564.5101	34277	-0.9867	V	T. Arranz	0.0006	DY Peg	57646.6546	180245	-0.0163	V	G. Samolyk	0.0005
AR Her	57565.4507	34279	-0.9861	V	T. Arranz	0.0008	DY Peg	57646.7265	180246	-0.0173	V	G. Samolyk	0.0006
AR Her	57568.7283	34286	-0.9987	V	G. Samolyk	0.0015	DY Peg	57646.8009	180247	-0.0158	V	G. Samolyk	0.0008
AR Her	57581.4531	34313	-0.9647	V	T. Arranz	0.0011	DY Peg	57646.8722	180248	-0.0174	V	G. Samolyk	0.0006
AR Her	57582.4063	34315	-0.9515	V	T. Arranz	0.0019	DY Peg	57671.5217	180586	-0.0170	V	G. Samolyk	0.0004

Table 1. Recent times of maxima of stars in the AAVSO Short Period Pulsator program, cont.

Star	$\begin{gathered} J D(\max) \\ \text { Hel. } \\ 2400000+ \end{gathered}$	Cycle	$O-C$	F	Observer	Error	Star	$\begin{gathered} J D(\max) \\ \text { Hel. } \\ 2400000+ \end{gathered}$	Cycle	$O-C$	F	Observer	Error
DY Peg	57671.5951	180587	-0.0166	V	G. Samolyk	0.0005	AE UMa	57405.5347	253452	0.0021	V	G. Samolyk	0.0009
DY Peg	57671.6685	180588	-0.0160	V	G. Samolyk	0.0004	AE UMa	57405.6240	253453	0.0054	V	G. Samolyk	0.0012
DY Peg	57671.7391	180589	-0.0184	V	G. Samolyk	0.0007	AE UMa	57405.7061	253454	0.0014	V	G. Samolyk	0.0007
DF Ser	57447.9172	63367	0.0998	V	K. Menzies	0.0013	AE UMa	57405.7963	253455	0.0056	V	G. Samolyk	0.0013
DF Ser	57501.7681	63490	0.1019	V	G. Samolyk	0.0009	AE UMa	57406.5606	253464	-0.0042	V	G. Samolyk	0.0006
DF Ser	57604.6483	63725	0.1003	V	G. Samolyk	0.0012	AE UMa	57406.6491	253465	-0.0017	V	G. Samolyk	0.0007
RV UMa	57411.8305	26356	0.1301	V	G. Samolyk	0.0012	AE UMa	57406.7402	253466	0.0033	V	G. Samolyk	0.0009
RV UMa	57563.4802	26680	0.1284	V	T. Arranz	0.0006	AE UMa	57406.8232	253467	0.0003	V	G. Samolyk	0.0006
RV UMa	57564.4170	26682	0.1291	V	T. Arranz	0.0005	AE UMa	57406.9077	253468	-0.0012	V	G. Samolyk	0.0009
RV UMa	57571.4362	26697	0.1274	V	T. Arranz	0.0005	AE UMa	57712.7860	257024	0.0005	V	G. Samolyk	0.0006
RV UMa	57586.4105	26729	0.1238	V	T. Arranz	0.0007	AE UMa	57712.8698	257025	-0.0018	V	G. Samolyk	0.0008
AE UMa	57158.4059	250579	0.0003	V	T. Arranz	0.0003	AE UMa	57712.9608	257026	0.0032	V	G. Samolyk	0.0009
AE UMa	57390.7357	253280	-0.0020	V	G. Samolyk	0.0001	AE UMa	57736.6984	257302	0.0001	V	G. Samolyk	0.0009
AE UMa	57392.6348	253302	0.0047	V	G. Samolyk	0.0008	AE UMa	57736.7884	257303	0.0041	V	G. Samolyk	0.0009
AE UMa	57392.7175	253303	0.0014	V	G. Samolyk	0.0005	AE UMa	57737.7311	257314	0.0006	V	G. Samolyk	0.0006
AE UMa	57392.7996	253304	-0.0025	V	G. Samolyk	0.0006	AE UMa	57737.8141	257315	-0.0024	V	G. Samolyk	0.0006
AE UMa	57392.8903	253305	0.0022	V	G. Samolyk	0.0007	AE UMa	57750.7168	257465	-0.0023	V	G. Samolyk	0.0005
AE UMa	57392.9780	253306	0.0039	V	G. Samolyk	0.0004							

Visual Times of Maxima for Short Period Pulsating Stars I

Gerard Samolyk
P.O. Box 20677, Greenfield, WI 53220; gsamolyk@wi.rr.com

Received March 3, 2017; accepted March 3, 2017

Abstract

This compilation contains 463 times of maxima of 6 short period pulsating stars (primarily RR Lyrae). These were reduced from a portion of the visual observations made from 1966 to 2014 that are included in the AAVSO International Database.

1. Observations

This is the first in a series of papers to publish of times of maxima derived from visual observations reported to the AAVSO International Database as part of the RR Lyr committee legacy program. The goal of this project is to fill some historical gaps in the $\mathrm{O}-\mathrm{C}$ history for these stars. This list contains times of maxima for RR Lyr stars located in the constellations Andromeda, Aqrarius, and Auriga. This list will be web-archived and made available through the AAVSO ftp site at ftp://ftp.aavso.org/public/datasets/gsamo-451-rrlyr-1.txt.

These observations were reduced by the writer using the peranso program (Vanmunster 2007). The linear elements in the General Catalogue of Variable Stars (GCVS; Kholopov et al. 1985) were used to compute the $\mathrm{O}-\mathrm{C}$ values for all stars.

Figures 1 and 2 are $\mathrm{O}-\mathrm{C}$ plots for two of the stars listed.

References

Kholopov, P. N., et al. 1985, General Catalogue of Variable Stars, 4th ed., Moscow.
Samolyk, G. 2010, J. Amer. Assoc. Var. Star Obs., 38, 1.
Samolyk, G. 2011, J. Amer. Assoc. Var. Star Obs., 39, 1.
Samolyk, G. 2012, J. Amer. Assoc. Var. Star Obs., 40, 2.
Samolyk, G. 2013, J. Amer. Assoc. Var. Star Obs., 41, 1.
Samolyk, G. 2014, J. Amer. Assoc. Var. Star Obs., 42, 1.
Samolyk, G. 2015, J. Amer. Assoc. Var. Star Obs., 43, 1.
Samolyk, G. 2016, J. Amer. Assoc. Var. Star Obs., 44, 1.
Vanmunster, T. 2007, PERANSO period analysis software (http:// www.peranso.com).

Figure 1. O-C plot for SW And. The circled times of maxima are from CCD papers published in JAAVSO (Samolyk 2010-2016).

Figure 2. O-C plot for XX And. The circled times of maxima are from CCD papers published in JAAVSO (Samolyk 2010-2016).

Table 1. Recent times of minima of stars in the AAVSO short period pulsator program.

Star	$\begin{gathered} J D(\max) \\ \text { Hel. } \\ 2400000+ \end{gathered}$	Cycle	$\begin{aligned} & O-C \\ & (\text { day }) \end{aligned}$	Observer	Error (day)	Star	$\begin{gathered} J D(\max) \\ \text { Hel. } \\ 2400000+ \end{gathered}$	Cycle	$\begin{aligned} & O-C \\ & \text { (day) } \end{aligned}$	Observer	Error (day)
SW And	39471.603	48247	0.155	M. Baldwin	0.003	SW And	44132.673	58786	0.042	M. Baldwin	0.002
SW And	39505.655	48324	0.151	M. Baldwin	0.002	SW And	44136.653	58795	0.041	M. Baldwin	0.004
SW And	39757.746	48894	0.143	M. Baldwin	0.003	SW And	44140.620	58804	0.028	M. Baldwin	0.003
SW And	39761.731	48903	0.147	M. Baldwin	0.003	SW And	44194.584	58926	0.033	M. Baldwin	0.002
SW And	39772.794	48928	0.153	M. Baldwin	0.004	SW And	44216.682	58976	0.018	M. Baldwin	0.004
SW And	39800.648	48991	0.144	M. Baldwin	0.002	SW And	44217.572	58978	0.023	M. Baldwin	0.003
SW And	39823.650	49043	0.147	M. Baldwin	0.003	SW And	44539.562	59706	0.034	G. Hanson	0.005
SW And	39826.745	49050	0.146	M. Baldwin	0.003	SW And	44542.651	59713	0.027	G. Hanson	0.003
SW And	39884.675	49181	0.138	M. Baldwin	0.002	SW And	44550.604	59731	0.019	M. Baldwin	0.003
SW And	39892.639	49199	0.141	M. Baldwin	0.002	SW And	44554.584	59740	0.018	G. Hanson	0.003
SW And	40098.742	49665	0.142	M. Baldwin	0.003	SW And	44554.593	59740	0.027	M. Baldwin	0.002
SW And	40125.728	49726	0.148	M. Baldwin	0.004	SW And	44562.542	59758	0.015	G. Hanson	0.003
SW And	40128.815	49733	0.140	M. Baldwin	0.003	SW And	44623.577	59896	0.015	G. Hanson	0.003
SW And	40156.684	49796	0.145	M. Baldwin	0.002	SW And	44872.577	60459	0.012	M. Baldwin	0.003
SW And	40178.781	49846	0.128	M. Baldwin	0.003	SW And	44874.787	60464	0.011	L. Cook	0.004
SW And	40186.748	49864	0.134	M. Baldwin	0.003	SW And	44875.669	60466	0.008	M. Baldwin	0.003
SW And	40225.663	49952	0.128	T. Cragg	0.003	SW And	44876.567	60468	0.022	M. Baldwin	0.005
SW And	40455.650	50472	0.130	L. Hazel	0.004	SW And	44898.653	60518	-0.006	M. Baldwin	0.003
SW And	40478.653	50524	0.134	L. Hazel	0.004	SW And	44907.520	60538	0.015	M. Baldwin	0.002
SW And	40482.629	50533	0.130	L. Hazel	0.002	SW And	44926.534	60581	0.011	M. Baldwin	0.002
SW And	40512.707	50601	0.133	M. Baldwin	0.003	SW And	45266.627	61350	-0.009	G. Chaple	0.004
SW And	40562.677	50714	0.125	M. Baldwin	0.004	SW And	45672.623	62268	-0.025	G. Chaple	0.003
SW And	40566.662	50723	0.130	M. Baldwin	0.005	SW And	45699.607	62329	-0.021	G. Chaple	0.004
SW And	41972.647	53902	0.108	M. Baldwin	0.003	SW And	45989.729	62985	-0.034	M. Baldwin	0.005
SW And	41982.789	53925	0.078	M. Baldwin	0.003	SW And	45993.727	62994	-0.016	M. Baldwin	0.003
SW And	41983.682	53927	0.086	M. Baldwin	0.002	SW And	46005.654	63021	-0.031	M. Baldwin	0.004
SW And	41988.556	53938	0.095	M. Baldwin	0.003	SW And	46020.693	63055	-0.029	M. Baldwin	0.004
SW And	42018.620	54006	0.084	M. Baldwin	0.002	SW And	46021.598	63057	-0.009	M. Baldwin	0.004
SW And	42305.669	54655	0.094	M. Baldwin	0.004	SW And	46354.621	63810	-0.022	M. Baldwin	0.004
SW And	42342.810	54739	0.084	M. Baldwin	0.004	SW And	46442.627	64009	-0.030	M. Baldwin	0.003
SW And	42371.555	54804	0.080	B. Small	0.006	SW And	46679.670	64545	-0.049	M. Baldwin	0.003
SW And	42374.643	54811	0.072	M. Baldwin	0.004	SW And	46702.676	64597	-0.041	M. Baldwin	0.003
SW And	42386.595	54838	0.083	M. Baldwin	0.003	SW And	46710.626	64615	-0.052	M. Baldwin	0.004
SW And	42637.804	55406	0.077	M. Baldwin	0.004	SW And	46714.611	64624	-0.048	M. Baldwin	0.002
SW And	42660.789	55458	0.064	M. Baldwin	0.003	SW And	46722.579	64642	-0.041	M. Baldwin	0.003
SW And	42665.670	55469	0.080	M. Baldwin	0.003	SW And	46744.682	64692	-0.052	M. Baldwin	0.003
SW And	42668.759	55476	0.073	M. Baldwin	0.002	SW And	46833.569	64893	-0.063	M. Baldwin	0.005
SW And	42669.645	55478	0.074	M. Baldwin	0.002	SW And	46973.786	65210	-0.049	M. Baldwin	0.003
SW And	42688.665	55521	0.076	M. Baldwin	0.003	SW And	47023.754	65323	-0.058	M. Baldwin	0.002
SW And	42692.643	55530	0.074	M. Baldwin	0.003	SW And	47082.585	65456	-0.050	M. Baldwin	0.004
SW And	42715.648	55582	0.080	M. Baldwin	0.005	SW And	47139.617	65585	-0.072	M. Baldwin	0.005
SW And	43021.675	56274	0.050	M. Baldwin	0.004	SW And	47410.735	66198	-0.072	M. Baldwin	0.002
SW And	43028.758	56290	0.056	M. Baldwin	0.004	SW And	47422.674	66225	-0.074	M. Baldwin	0.003
SW And	43033.647	56301	0.080	M. Baldwin	0.003	SW And	47449.662	66286	-0.065	M. Baldwin	0.004
SW And	43044.691	56326	0.067	M. Baldwin	0.002	SW And	47557.559	66530	-0.085	M. Baldwin	0.004
SW And	43098.646	56448	0.064	M. Baldwin	0.003	SW And	47807.884	67096	-0.090	G. Samolyk	0.003
SW And	43144.632	56552	0.053	M. Baldwin	0.003	SW And	47894.588	67292	-0.072	G. Samolyk	0.004
SW And	43397.614	57124	0.051	M. Baldwin	0.004	SW And	47940.571	67396	-0.087	M. Baldwin	0.002
SW And	43404.698	57140	0.059	M. Baldwin	0.004	SW And	48219.637	68027	-0.099	M. Baldwin	0.002
SW And	43416.634	57167	0.053	M. Baldwin	0.003	SW And	48235.555	68063	-0.103	M. Baldwin	0.003
SW And	43423.708	57183	0.051	M. Baldwin	0.002	SW And	48296.591	68201	-0.101	M. Baldwin	0.002
SW And	43447.596	57237	0.055	M. Baldwin	0.003	SW And	48545.589	68764	-0.107	M. Baldwin	0.003
SW And	43466.613	57280	0.054	M. Baldwin	0.004	SW And	48866.669	69490	-0.122	M. Baldwin	0.002
SW And	43489.598	57332	0.041	M. Baldwin	0.003	SW And	48893.654	69551	-0.116	M. Baldwin	0.004
SW And	43493.583	57341	0.045	M. Baldwin	0.003	SW And	49338.561	70557	-0.142	M. Baldwin	0.003
SW And	43505.525	57368	0.046	M. Baldwin	0.004	SW And	49361.567	70609	-0.134	M. Baldwin	0.003
SW And	43512.601	57384	0.045	M. Baldwin	0.003	SW And	49662.734	71290	-0.160	L. Hazel	0.004
SW And	43520.548	57402	0.031	M. Baldwin	0.004	SW And	49744.571	71475	-0.144	M. Baldwin	0.004
SW And	43756.729	57936	0.035	M. Baldwin	0.003	SW And	50104.560	72289	-0.171	M. Baldwin	0.004
SW And	43760.725	57945	0.051	M. Baldwin	0.005	SW And	51045.701	74417	-0.201	R. Berg	0.003
SW And	43776.641	57981	0.045	M. Baldwin	0.004	SW And	51088.591	74514	-0.212	R. Berg	0.005
SW And	43822.627	58085	0.033	M. Baldwin	0.004	SW And	51100.547	74541	-0.197	R. Berg	0.003
SW And	43841.659	58128	0.047	M. Baldwin	0.004	SW And	51106.735	74555	-0.201	R. Berg	0.003
SW And	44101.716	58716	0.044	M. Baldwin	0.003	SW And	51111.592	74566	-0.209	R. Berg	0.005
SW And	44128.683	58777	0.032	M. Baldwin	0.003	SW And	51115.572	74575	-0.210	R. Berg	0.004

Table 1. Recent times of minima of stars in the AAVSO short period pulsator program, cont.

Star	$\begin{gathered} J D(\max) \\ \text { Hel. } \\ 2400000+ \end{gathered}$	Cycle	$\begin{aligned} & O-C \\ & \text { (day) } \end{aligned}$	Observer	Error (day)	Star	$\begin{gathered} J D(\max) \\ \text { Hel. } \\ 2400000+ \end{gathered}$	Cycle	$\begin{aligned} & O-C \\ & \text { (day) } \end{aligned}$	Observer	Error (day)
SW And	51133.720	74616	-0.195	L. Hazel	0.004	XX And	44514.607	7509	0.062	M. Baldwin	0.011
SW And	51142.563	74636	-0.198	R. Berg	0.004	XX And	44522.593	7520	0.098	M. Baldwin	0.019
SW And	51149.650	74652	-0.187	R. Berg	0.004	XX And	44553.633	7563	0.060	M. Baldwin	0.006
SW And	51161.566	74679	-0.213	M. Baldwin	0.004	XX And	44871.674	8003	0.092	M. Baldwin	0.007
SW And	51397.754	75213	-0.202	M. Baldwin	0.004	XX And	44876.694	8010	0.053	M. Heifner	0.005
SW And	51421.631	75267	-0.208	M. Baldwin	0.003	XX And	44876.719	8010	0.078	M. Baldwin	0.008
SW And	51424.717	75274	-0.218	M. Baldwin	0.004	XX And	44884.678	8021	0.087	M. Baldwin	0.007
SW And	51436.658	75301	-0.219	M. Baldwin	0.004	XX And	44897.659	8039	0.059	M. Heifner	0.005
SW And	51501.671	75448	-0.221	R. Berg	0.004	XX And	44926.610	8079	0.100	M. Baldwin	0.011
SW And	51853.716	76244	-0.230	R. Berg	0.003	XX And	45249.649	8526	0.071	M. Heifner	0.009
SW And	51881.588	76307	-0.222	R. Berg	0.004	XX And	45593.694	9002	0.088	M. Heifner	0.006
SW And	52539.673	77795	-0.249	R. Berg	0.003	XX And	45614.656	9031	0.090	M. Heifner	0.004
SW And	54049.548	81209	-0.316	R. Harvan	0.007	XX And	45635.616	9060	0.091	M. Heifner	0.006
SW And	54118.549	81365	-0.310	R. Harvan	0.004	XX And	45653.692	9085	0.098	M. Heifner	0.008
SW And	54324.642	81831	-0.319	R. Harvan	0.004	XX And	45666.702	9103	0.099	L. Cook	0.006
SW And	54347.630	81883	-0.330	R. Harvan	0.008	XX And	45989.760	9550	0.088	M. Baldwin	0.001
SW And	54350.724	81890	-0.332	R. Harvan	0.004	XX And	46005.669	9572	0.097	M. Baldwin	0.012
SW And	54405.581	82014	-0.318	R. Harvan	0.005	XX And	46021.581	9594	0.109	M. Baldwin	0.005
SW And	54412.655	82030	-0.320	R. Harvan	0.004	XX And	46026.645	9601	0.113	M. Baldwin	0.009
XX And	39472.659	533	-0.002	M. Baldwin	0.007	XX And	46057.722	9644	0.112	M. Baldwin	0.003
XX And	39477.710	540	-0.010	M. Baldwin	0.005	XX And	46725.548	10568	0.120	M. Baldwin	0.006
XX And	39884.642	1103	0.016	M. Baldwin	0.002	XX And	46735.675	10582	0.128	M. Baldwin	0.004
XX And	39897.653	1121	0.018	M. Baldwin	0.012	XX And	47037.788	11000	0.133	M. Baldwin	0.011
XX And	40129.659	1442	0.022	M. Baldwin	0.007	XX And	47040.681	11004	0.135	M. Baldwin	0.004
XX And	40147.716	1467	0.010	M. Baldwin	0.009	XX And	47087.658	11069	0.134	M. Baldwin	0.009
XX And	40178.782	1510	-0.003	M. Baldwin	0.005	XX And	47152.708	11159	0.137	M. Baldwin	0.008
XX And	40186.714	1521	-0.021	M. Baldwin	0.005	XX And	47543.713	11700	0.135	R. Hill	0.005
XX And	40207.664	1550	-0.030	M. Baldwin	0.006	XX And	47859.566	12137	0.147	G. Samolyk	0.002
XX And	40457.787	1896	0.022	M. Baldwin	0.009	XX And	48177.584	12577	0.157	M. Baldwin	0.006
XX And	40512.704	1972	0.011	M. Baldwin	0.009	XX And	48211.553	12624	0.157	M. Baldwin	0.006
XX And	40554.629	2030	0.017	M. Baldwin	0.007	XX And	48237.558	12660	0.143	M. Baldwin	0.007
XX And	40556.780	2033	-0.001	M. Baldwin	0.006	XX And	48547.612	13089	0.138	M. Baldwin	0.006
XX And	40559.638	2037	-0.034	M. Baldwin	0.006	XX And	49962.795	15047	0.183	M. Baldwin	0.005
XX And	41982.780	4006	0.019	M. Baldwin	0.005	XX And	49965.683	15051	0.179	M. Baldwin	0.009
XX And	41988.575	4014	0.032	M. Baldwin	0.009	XX And	51493.594	17165	0.202	M. Baldwin	0.001
XX And	41990.721	4017	0.009	M. Baldwin	0.006	AT And	39505.618	-4600	0.005	M. Baldwin	0.007
XX And	42392.566	4573	0.007	M. Baldwin	0.006	AT And	39851.703	-4039	0.001	M. Baldwin	0.003
XX And	42631.831	4904	0.043	M. Baldwin	0.010	AT And	39859.711	-4026	-0.011	M. Baldwin	0.009
XX And	42660.747	4944	0.049	M. Baldwin	0.007	AT And	39893.656	-3971	0.004	M. Baldwin	0.005
XX And	42665.778	4951	0.021	M. Baldwin	0.002	AT And	40184.849	-3499	0.013	M. Baldwin	0.011
XX And	42668.671	4955	0.023	M. Baldwin	0.004	AT And	40207.665	-3462	0.003	M. Baldwin	0.003
XX And	42688.920	4983	0.035	M. Baldwin	0.003	AT And	40566.718	-2880	0.012	M. Baldwin	0.011
XX And	42689.675	4984	0.067	M. Baldwin	0.009	AT And	41683.325	-1070	0.003	M. Baldwin	0.005
XX And	42715.653	5020	0.026	M. Baldwin	0.010	AT And	42270.612	-118	-0.013	H. Smith	0.011
XX And	42728.669	5038	0.033	M. Baldwin	0.001	AT And	42598.835	414	0.012	M. Baldwin	0.009
XX And	43033.689	5460	0.054	M. Baldwin	0.009	AT And	43130.596	1276	-0.008	M. Baldwin	0.007
XX And	43080.670	5525	0.056	M. Baldwin	0.005	AT And	43397.723	1709	-0.005	M. Baldwin	0.005
XX And	43098.734	5550	0.051	M. Baldwin	0.001	AT And	43753.681	2286	-0.007	M. Baldwin	0.007
XX And	43101.620	5554	0.046	M. Baldwin	0.008	AT And	44217.616	3038	0.008	M. Baldwin	0.009
XX And	43127.635	5590	0.042	M. Baldwin	0.009	AT And	45993.715	5917	0.010	M. Baldwin	0.009
XX And	43398.675	5965	0.052	M. Baldwin	0.007	AT And	46027.629	5972	-0.006	M. Baldwin	0.007
XX And	43403.749	5972	0.067	M. Baldwin	0.009	AT And	46679.714	7029	0.000	M. Baldwin	0.003
XX And	43466.616	6059	0.055	M. Baldwin	0.006	AT And	46996.805	7543	-0.003	M. Baldwin	0.005
XX And	43721.761	6412	0.070	M. Baldwin	0.007	AT And	47001.737	7551	-0.007	M. Baldwin	0.007
XX And	43776.699	6488	0.079	M. Baldwin	0.010	AT And	47027.660	7593	0.006	M. Baldwin	0.007
XX And	43891.605	6647	0.069	M. Baldwin	0.003	AT And	47064.667	7653	-0.002	M. Baldwin	0.003
XX And	44128.663	6975	0.066	M. Baldwin	0.007	AT And	47331.803	8086	0.010	M. Baldwin	0.009
XX And	44133.712	6982	0.055	M. Baldwin	0.005	AT And	51512.636	14863	0.012	M. Baldwin	0.011
XX And	44133.728	6982	0.072	M. Heifner	0.009	AT And	55429.400	21212	-0.016	J. Starzomski	0.014
XX And	44141.667	6993	0.060	M. Heifner	0.012	SW Aqr	40549.709	33643	-0.005	T. Cragg	0.001
XX And	44141.681	6993	0.074	M. Baldwin	0.013	SW Aqr	49635.650	53425	0.001	G. Samolyk	0.004
XX And	44193.699	7065	0.055	M. Heifner	0.005	SW Aqr	50003.556	54226	0.005	G. Samolyk	0.005
XX And	44222.617	7105	0.062	M. Baldwin	0.009	SW Aqr	50257.549	54779	0.003	I. Fernandez	0.002
XX And	44274.647	7177	0.055	M. Heifner	0.006	SW Aqr	50257.549	54779	0.003	M. Tejera	0.003
XX And	44506.635	7498	0.041	M. Heifner	0.005	SW Aqr	50257.555	54779	0.009	F. Turi	0.008

Table 1. Recent times of minima of stars in the AAVSO short period pulsator program, cont.

Star	$\begin{gathered} J D(\max) \\ \text { Hel. } \\ 2400000+ \end{gathered}$	Cycle	$\begin{aligned} & O-C \\ & \text { (day) } \end{aligned}$	Observer	Error (day)	Star	$\begin{gathered} \text { JD (max) } \\ \text { Hel. } \\ 2400000+ \end{gathered}$	Cycle	$\begin{aligned} & O-C \\ & (\text { day }) \end{aligned}$	Observer	Error (day)
SW Aqr	50347.565	54975	-0.004	G. Chaple	0.002	TZ Aur	47227.622	69765	0.010	M. Baldwin	0.005
SW Aqr	51045.706	56495	-0.004	R. Berg	0.004	TZ Aur	47236.630	69788	0.010	M. Baldwin	0.002
SW Aqr	51051.678	56508	-0.003	R. Berg	0.004	TZ Aur	47425.799	70271	0.000	M. Baldwin	0.003
SW Aqr	51056.727	56519	-0.007	R. Berg	0.003	TZ Aur	47445.788	70322	0.013	M. Baldwin	0.006
SW Aqr	51109.551	56634	-0.002	R. Berg	0.003	TZ Aur	47543.710	70572	0.017	R. Hill	0.004
SW Aqr	51429.686	57331	-0.002	R. Berg	0.003	TZ Aur	47558.593	70610	0.016	M. Baldwin	0.003
SW Aqr	51435.650	57344	-0.009	R. Berg	0.008	TZ Aur	47914.624	71519	0.015	M. Baldwin	0.008
SW Aqr	51785.642	58106	-0.006	R. Berg	0.008	TZ Aur	47915.796	71522	0.012	M. Baldwin	0.003
SW Aqr	51812.743	58165	-0.004	R. Hill	0.004	TZ Aur	47921.671	71537	0.012	M. Baldwin	0.003
SW Aqr	51837.554	58219	0.005	G. Samolyk	0.004	TZ Aur	47923.633	71542	0.015	M. Baldwin	0.002
TZ Aur	39892.738	51038	0.017	M. Baldwin	0.007	TZ Aur	47943.613	71593	0.020	M. Baldwin	0.003
TZ Aur	39894.681	51043	0.001	M. Baldwin	0.004	TZ Aur	47948.697	71606	0.012	M. Baldwin	0.003
TZ Aur	39912.700	51089	0.003	M. Baldwin	0.004	TZ Aur	48362.697	72663	0.012	M. Baldwin	0.003
TZ Aur	39915.830	51097	0.000	M. Baldwin	0.003	TZ Aur	48648.619	73393	0.012	M. Baldwin	0.004
TZ Aur	39917.796	51102	0.007	M. Baldwin	0.008	TZ Aur	48655.667	73411	0.009	M. Baldwin	0.003
TZ Aur	40203.716	51832	0.005	M. Baldwin	0.005	TZ Aur	49416.700	75354	0.019	M. Baldwin	0.003
TZ Aur	40207.637	51842	0.009	M. Baldwin	0.002	TZ Aur	49720.631	76130	0.010	M. Baldwin	0.002
TZ Aur	40270.697	52003	0.010	M. Baldwin	0.007	TZ Aur	49832.651	76416	0.011	M. Baldwin	0.005
TZ Aur	40293.799	52062	0.003	M. Baldwin	0.002	TZ Aur	50130.721	77177	0.017	R. Hill	0.009
TZ Aur	40566.798	52759	0.005	M. Baldwin	0.003	TZ Aur	50190.642	77330	0.012	M. Baldwin	0.004
TZ Aur	41683.472	55610	0.014	M. Baldwin	0.004	TZ Aur	50546.676	78239	0.013	M. Baldwin	0.003
TZ Aur	41705.405	55666	0.013	M. Baldwin	0.003	TZ Aur	50575.656	78313	0.009	M. Baldwin	0.002
TZ Aur	41752.402	55786	0.010	M. Baldwin	0.003	TZ Aur	50902.703	79148	0.008	M. Baldwin	0.003
TZ Aur	41765.327	55819	0.009	M. Baldwin	0.009	TZ Aur	51157.684	79799	0.009	M. Baldwin	0.002
TZ Aur	41766.488	55822	-0.005	M. Baldwin	0.008	TZ Aur	51161.605	79809	0.013	M. Baldwin	0.002
TZ Aur	42429.609	57515	0.011	M. Baldwin	0.005	TZ Aur	51253.654	80044	0.019	R. Berg	0.005
TZ Aur	42843.605	58572	0.007	M. Baldwin	0.003	TZ Aur	51262.661	80067	0.017	R. Berg	0.003
TZ Aur	42861.618	58618	0.003	M. Baldwin	0.002	TZ Aur	51489.822	80647	0.007	R. Berg	0.003
TZ Aur	43130.704	59305	0.009	M. Baldwin	0.005	TZ Aur	51609.678	80953	0.010	R. Berg	0.007
TZ Aur	43219.614	59532	0.008	M. Baldwin	0.004	TZ Aur	51627.693	80999	0.008	R. Berg	0.001
TZ Aur	43246.638	59601	0.007	M. Baldwin	0.004	TZ Aur	51989.608	81923	0.016	G. Samolyk	0.003
TZ Aur	43505.534	60262	0.006	M. Baldwin	0.002	BH Aur	39152.620	-7891	-0.017	M. Baldwin	0.005
TZ Aur	43512.585	60280	0.007	M. Baldwin	0.002	BH Aur	39168.590	-7856	-0.011	M. Baldwin	0.006
TZ Aur	43519.634	60298	0.006	M. Baldwin	0.003	BH Aur	39173.626	-7845	0.008	M. Baldwin	0.014
TZ Aur	43548.620	60372	0.008	M. Baldwin	0.004	BH Aur	39178.623	-7834	-0.012	M. Baldwin	0.007
TZ Aur	43550.583	60377	0.012	M. Baldwin	0.004	BH Aur	39443.635	-7253	0.012	M. Baldwin	0.006
TZ Aur	43566.651	60418	0.022	M. Baldwin	0.007	BH Aur	39473.721	-7187	-0.004	M. Baldwin	0.006
TZ Aur	43606.584	60520	0.004	M. Baldwin	0.004	BH Aur	39474.632	-7185	-0.005	M. Baldwin	0.006
TZ Aur	43935.605	61360	0.018	M. Baldwin	0.008	BH Aur	39495.613	-7139	-0.004	M. Baldwin	0.004
TZ Aur	44340.588	62394	0.010	M. Baldwin	0.007	BH Aur	39500.635	-7128	0.001	M. Baldwin	0.005
TZ Aur	44553.660	62938	0.011	M. Baldwin	0.002	BH Aur	39505.661	-7117	0.010	M. Baldwin	0.006
TZ Aur	44629.650	63132	0.016	G. Hanson	0.001	BH Aur	39506.553	-7115	-0.010	M. Baldwin	0.004
TZ Aur	44696.619	63303	0.008	M. Baldwin	0.004	BH Aur	39530.742	-7062	0.006	M. Baldwin	0.004
TZ Aur	44907.743	63842	0.020	M. Baldwin	0.007	BH Aur	39537.573	-7047	-0.004	M. Baldwin	0.004
TZ Aur	44979.794	64026	0.003	L. Cook	0.004	BH Aur	39556.715	-7005	-0.018	M. Baldwin	0.005
TZ Aur	44985.671	64041	0.005	G. Chaple	0.005	BH Aur	39567.689	-6981	0.010	M. Baldwin	0.003
TZ Aur	45993.842	66615	0.005	M. Baldwin	0.002	BH Aur	39884.660	-6286	-0.002	M. Baldwin	0.005
TZ Aur	46024.785	66694	0.006	M. Baldwin	0.004	BH Aur	39894.701	-6264	0.006	M. Baldwin	0.007
TZ Aur	46028.711	66704	0.015	M. Baldwin	0.006	BH Aur	39920.686	-6207	-0.007	M. Baldwin	0.006
TZ Aur	46057.687	66778	0.007	M. Baldwin	0.003	BH Aur	40184.761	-5628	-0.008	M. Baldwin	0.005
TZ Aur	46117.627	66931	0.021	M. Baldwin	0.013	BH Aur	40186.599	-5624	0.006	M. Baldwin	0.005
TZ Aur	46437.609	67748	0.005	G. Samolyk	0.001	BH Aur	40211.679	-5569	0.001	M. Baldwin	0.006
TZ Aur	46475.605	67845	0.008	G. Chaple	0.002	BH Aur	40293.776	-5389	0.002	M. Baldwin	0.009
TZ Aur	46511.644	67937	0.013	M. Baldwin	0.004	BH Aur	40294.684	-5387	-0.002	M. Baldwin	0.007
TZ Aur	46518.703	67955	0.022	M. Baldwin	0.006	BH Aur	40565.606	-4793	0.002	L. Hazel	0.007
TZ Aur	46520.655	67960	0.016	M. Baldwin	0.003	BH Aur	41374.714	-3019	0.007	T. Cragg	0.008
TZ Aur	46527.697	67978	0.008	M. Baldwin	0.004	BH Aur	41683.484	-2342	0.004	M. Baldwin	0.006
TZ Aur	46529.663	67983	0.015	M. Baldwin	0.004	BH Aur	41705.364	-2294	-0.008	M. Baldwin	0.010
TZ Aur	46531.624	67988	0.018	M. Baldwin	0.007	BH Aur	41751.434	-2193	-0.003	M. Baldwin	0.005
TZ Aur	46744.686	68532	0.009	M. Baldwin	0.009	BH Aur	41752.349	-2191	0.000	M. Baldwin	0.008
TZ Aur	46829.682	68749	0.011	M. Baldwin	0.005	BH Aur	41982.675	-1686	0.000	M. Baldwin	0.008
TZ Aur	46831.635	68754	0.006	M. Baldwin	0.004	BH Aur	42003.655	-1640	0.000	M. Baldwin	0.003
TZ Aur	46833.590	68759	0.003	M. Baldwin	0.005	BH Aur	42387.685	-798	0.003	M. Baldwin	0.007
TZ Aur	46916.639	68971	0.017	M. Baldwin	0.004	BH Aur	42429.630	-706	-0.013	M. Baldwin	0.009
TZ Aur	47171.620	69622	0.018	M. Baldwin	0.006	BH Aur	42506.712	-537	-0.010	T. Cragg	0.003

Table 1. Recent times of minima of stars in the AAVSO short period pulsator program, cont.

Star	$\begin{gathered} J D(\max) \\ \text { Hel. } \\ 2400000+ \end{gathered}$	Cycle	$\begin{aligned} & O-C \\ & \text { (day) } \end{aligned}$	Observer	Error (day)	Star	$\begin{gathered} J D(\max) \\ \text { Hel. } \\ 2400000+ \end{gathered}$	Cycle	$\begin{aligned} & O-C \\ & \text { (day) } \end{aligned}$	Observer	Error (day)
BH Aur	42660.886	-199	0.006	M. Baldwin	0.007	BH Aur	46475.607	8165	-0.008	G. Chaple	0.003
BH Aur	42665.878	-188	-0.019	M. Baldwin	0.007	BH Aur	46490.653	8198	-0.013	M. Heifner	0.001
BH Aur	42751.648	0	0.006	M. Baldwin	0.007	BH Aur	46490.673	8198	0.007	M. Baldwin	0.005
BH Aur	42845.597	206	0.001	M. Baldwin	0.004	BH Aur	46511.642	8244	-0.004	M. Baldwin	0.003
BH Aur	42871.599	263	0.005	M. Baldwin	0.004	BH Aur	46521.673	8266	-0.007	M. Baldwin	0.003
BH Aur	43055.842	667	-0.012	M. Baldwin	0.005	BH Aur	46532.623	8290	-0.003	M. Baldwin	0.005
BH Aur	43130.652	831	-0.001	M. Baldwin	0.005	BH Aur	46734.681	8733	0.007	M. Baldwin	0.007
BH Aur	43131.573	833	0.008	M. Baldwin	0.007	BH Aur	46744.694	8755	-0.014	M. Baldwin	0.004
BH Aur	43136.584	844	0.002	M. Baldwin	0.007	BH Aur	46787.581	8849	0.000	M. Baldwin	0.007
BH Aur	43219.595	1026	0.005	M. Baldwin	0.009	BH Aur	46790.775	8856	0.002	R. Hill	0.007
BH Aur	43489.607	1618	0.012	M. Baldwin	0.005	BH Aur	46875.612	9042	0.006	G. Samolyk	0.005
BH Aur	43493.690	1627	-0.010	M. Baldwin	0.004	BH Aur	46911.635	9121	-0.002	M. Baldwin	0.002
BH Aur	43494.614	1629	0.002	M. Baldwin	0.008	BH Aur	47114.599	9566	0.002	M. Baldwin	0.006
BH Aur	43505.558	1653	0.000	M. Baldwin	0.006	BH Aur	47140.596	9623	0.002	M. Baldwin	0.007
BH Aur	43520.594	1686	-0.015	M. Baldwin	0.005	BH Aur	47151.550	9647	0.010	M. Baldwin	0.007
BH Aur	44216.602	3212	0.000	M. Heifner	0.006	BH Aur	47835.659	11147	-0.016	M. Baldwin	0.007
BH Aur	44221.606	3223	-0.013	M. Baldwin	0.005	BH Aur	47940.583	11377	0.007	M. Baldwin	0.003
BH Aur	44226.627	3234	-0.009	M. Baldwin	0.008	BH Aur	47950.607	11399	-0.003	G. Samolyk	0.002
BH Aur	44227.542	3236	-0.007	M. Baldwin	0.009	BH Aur	48236.561	12026	-0.017	M. Baldwin	0.002
BH Aur	44319.665	3438	-0.014	M. Heifner	0.003	BH Aur	48328.693	12228	-0.015	R. Hill	0.004
BH Aur	44598.809	4050	0.003	G. Hanson	0.004	BH Aur	48682.633	13004	-0.001	M. Baldwin	0.004
BH Aur	44614.758	4085	-0.011	G. Samolyk	0.004	BH Aur	49010.550	13723	-0.012	M. Baldwin	0.007
BH Aur	44616.589	4089	-0.004	G. Hanson	0.003	BH Aur	49397.782	14572	-0.001	M. Baldwin	0.003
BH Aur	44938.596	4795	0.003	M. Baldwin	0.007	BH Aur	50490.566	16968	-0.008	G. Chaple	0.006
BH Aur	44957.746	4837	-0.002	G. Samolyk	0.003	BH Aur	50541.654	17080	-0.002	M. Baldwin	0.002
BH Aur	44994.685	4918	-0.007	G. Chaple	0.005	BH Aur	51149.625	18413	0.002	R. Berg	0.007
BH Aur	44995.608	4920	0.004	G. Samolyk	0.004	BH Aur	51212.558	18551	-0.006	R. Berg	0.004
BH Aur	45348.615	5694	-0.002	G. Chaple	0.004	BH Aur	51438.787	19047	0.003	M. Baldwin	0.006
BH Aur	46028.656	7185	0.009	M. Baldwin	0.007	BH Aur	51491.683	19163	-0.008	R. Berg	0.005
BH Aur	46033.649	7196	-0.015	M. Baldwin	0.006	BH Aur	51512.670	19209	-0.001	M. Baldwin	0.004
BH Aur	46038.678	7207	-0.003	M. Baldwin	0.006	BH Aur	51513.593	19211	0.010	M. Baldwin	0.003
BH Aur	46058.743	7251	-0.006	M. Baldwin	0.004	BH Aur	51621.674	19448	-0.002	R. Berg	0.005
BH Aur	46112.573	7369	0.005	M. Baldwin	0.006	BH Aur	51627.605	19461	-0.001	R. Berg	0.005
BH Aur	46117.588	7380	0.003	M. Baldwin	0.006	BH Aur	52354.603	21055	-0.010	R. Berg	0.007

Recent Minima of 298 Eclipsing Binary Stars

Gerard Samolyk

P.O. Box 20677, Greenfield, WI 53220; gsamolyk@wi.rr.com

Received February 17, 2017; accepted February 17, 2017

Abstract

This paper continues the publication of times of minima for eclipsing binary stars from observations reported to the AAVSO EB section. Times of minima from observations received from August 2016 thru January 2017 are presented.

1. Recent observations

The accompanying list contains times of minima calculated from recent CCD observations made by participants in the AAVSO's eclipsing binary program. This list will be webarchived and made available through the AAVSO ftp site at ftp://ftp.aavso.org/public/datasets/gsamoj451eb.txt. This list, along with the eclipsing binary data from earlier AAVSO publications, is also included in the Lichtenknecker database administrated by the Bundesdeutsche Arbeitsgemeinschaft für Veränderliche Sterne e. V. (BAV) at: http://www.bav-astro.eu/index.php/veroeffentlichungen/service-for-scientists/lkdb-engl. These observations were reduced by the observers or the writer using the method of Kwee and Van Woerden (1956). The standard error is included when available. Column F indicates the filter used. A "C" indicates a clear filter.

The linear elements in the General Catalogue of Variable Stars (GCVS; Kholopov et al. 1985) were used to compute the O-C values for most stars. For a few exceptions where the GCVS elements are missing or are in significant error, light elements from another source are used: CD Cam (Baldwin and Samolyk 2007), AC CMi (Samolyk 2008), CW Cas (Samolyk 1992a), DV Cep (Frank and Lichtenknecker 1987), DF Hya (Samolyk 1992b), and GU Ori (Samolyk 1985) .

The light elements used for QX And, V404 And, V463 And, EF Aqr, FS Aqr, IU Cnc, AP CMi, CZ CMi, LS Del, BC Her, V728 Her, V899 Her, V1033 Her, V1034 Her, WZ Leo, V423 Oph, V1363 Ori, V351 Peg, AQ Psc, CP Psc, DS Psc, DV Psc, DZ Psc, GR Psc, V1121 Tau, V1128 Tau, V1223 Tau, HT Vir, and MS Vir are from Kreiner (2004).

The light elements used for DD Aqr, GK Aqr, V1542 Aql, XY Boo, DN Boo, GH Boo, GM Boo, GP Boo, IK Boo, CW CMi, CX CMi, V2477 Cyg, V2643 Cyg, MZ Del, KK Gem, V1092 Her, V1097 Her, V470 Hya, V474 Hya, XX Leo, CE Leo, GV Leo, HI Leo, V1853 Ori, V2790 Ori, V740 Per,

VZ Psc, ET Psc, V1332 Tau, GR Vir, IR Vir, and NN Vir are from Paschke (2014).

The light elements used for MW And, V459 Aur, V348 Cyg, V382 Cyg, V2247 Cyg, V337 Gem, V390 Hya, V613 Peg, BB Per, V881 Per, HO Psc, and V495 Vul are from Nelson (2016).

The light elements used for V1470 Aql, V380 Gem, V383 Gem, V388 Gem, EU Hya, V534 Peg, V737 Per, V996 Per, and V391 Vir are from the AAVSO VSX site (Watson et al. 2014). O-C values listed in this paper can be directly compared with values published in the AAVSO EB monographs.

References

Baldwin, M. E., and Samolyk, G. 2007, Observed Minima Timings of Eclipsing Binaries No. 12, AAVSO, Cambridge, MA.
Frank, P., and Lichtenknecker, D. 1987, BAV Mitt., No. 47, 1. Kholopov, P. N., et al. 1985, General Catalogue of Variable Stars, 4th ed., Moscow.
Kreiner, J. M. 2004, "Up-to-date linear elements of eclipsing binaries," Acta Astron., 54, 207 (http://www.as.up.krakow. pl/ephem/).
Kwee, K. K., and van Woerden, H. 1956, Bull. Astron. Inst. Netherlands, 12, 327.
Nelson, R. 2016, Eclipsing Binary O-C Files (https://www. aavso.org/bob-nelsons-o-c-files).
Paschke, A. 2014, "O-C Gateway" (http://var.astro.cz/ocgate/).
Samolyk, G. 1985, J. Amer. Assoc. Var. Star Obs., 14, 12.
Samolyk, G. 1992a, J. Amer. Assoc. Var. Star Obs., 21, 34.
Samolyk, G. 1992b, J. Amer. Assoc. Var. Star Obs., 21, 111.
Samolyk, G. 2008, J. Amer. Assoc. Var. Star Obs., 36, 171.
Watson, C., Henden, A. A., and Price, C. A. 2014, AAVSO International Variable Star Index VSX (Watson+, 20062016; https://www.aavso.org/vsx).

Table 1. Recent times of minima of stars in the AAVSO eclipsing binary program.

Star	$\begin{gathered} J D(\min) \\ \mathrm{Hel} . \\ 2400000+ \end{gathered}$	Cycle	$\begin{aligned} & O-C \\ & (\text { day }) \end{aligned}$	F	Observer	Error (day)	Star	$\begin{gathered} J D \text { (min) } \\ \text { Hel. } \\ 2400000+ \end{gathered}$	Cycle	$\begin{aligned} & O-C \\ & \text { (day) } \end{aligned}$	F	Observer	Error (day)
RT And	57607.8799	26181	-0.0127	V	G. Samolyk	0.0001	WZ And	57630.7561	24090	0.0745	V	K. Menzies	0.0001
RT And	57684.6107	26303	-0.0113	V	G. Samolyk	0.0001	WZ And	57676.6706	24156	0.0756	V	G. Samolyk	0.0001
TW And	57634.6771	4515	-0.0579	V	G. Samolyk	0.0003	XZ And	57633.7960	24797	0.1819	V	G. Samolyk	0.0001
UU And	57608.7866	10737	0.0864	V	G. Samolyk	0.0001	XZ And	57754.5949	24886	0.1831	V	G. Samolyk	0.0001
UU And	57684.5883	10788	0.0871	V	G. Samolyk	0.0001	AB And	57603.8708	64763	-0.0398	V	R. Sabo	0.0001
WZ And	57623.7991	24080	0.0741	V	G. Samolyk	0.0001	AB And	57609.8443	64781	-0.0403	V	K. Menzies	0.0001

Table 1. Recent times of minima of stars in the AAVSO eclipsing binary program, cont.

Star	$\begin{gathered} J D(\text { min }) \\ \text { Hel. } \\ 2400000+ \end{gathered}$	Cycle	$\begin{aligned} & O-C \\ & \text { (day) } \end{aligned}$	F	Observer	Error (day)	Star	$\begin{gathered} J D(\text { min }) \\ \text { Hel. } \\ 2400000+ \end{gathered}$	Cycle	$\begin{aligned} & O-C \\ & \text { (day) } \end{aligned}$	F	Observer	Error (day)
AB And	57646.6842	64892	-0.0405	V	G. Samolyk	0.0003	TZ Boo	57608.6805	60491.5	0.0636	V	R. Sabo	0.0004
AB And	57690.3268	65023.5	-0.0417	V	L. Corp	0.0001	XY Boo	57531.7259	47435	0.0106	C	G. Frey	0.0001
AB And	57690.4935	65024	-0.0409	V	L. Corp	0.0001	DN Boo	57512.7338	5838	0.0014	C	G. Frey	0.0002
AB And	57698.6245	65048.5	-0.0413	V	G. Samolyk	0.0001	GH Boo	57510.6921	9478	-0.0070	C	G. Frey	0.0002
AD And	57623.7660	18882	-0.0347	V	K. Menzies	0.0001	GM Boo	57524.7314	15295	0.0163	C	G. Frey	0.0002
AD And	57649.9016	18908.5	-0.0333	V	G. Samolyk	0.0001	GP Boo	57525.7179	7654	-0.0081	C	G. Frey	0.0002
AD And	57711.5364	18971	-0.0357	V	K. Menzies	0.0001	IK Boo	57521.6857	13655	-0.0166	C	G. Frey	0.0001
BD And	57642.7817	48996	0.0206	V	G. Samolyk	0.0003	SV Cam	57684.7449	25444	0.0579	V	G. Samolyk	0.0002
BD And	57699.7154	49119	0.0173	V	G. Samolyk	0.0001	CD Cam	57684.7998	6441	-0.0096	V	G. Samolyk	0.0004
BX And	57622.8179	34574	-0.0876	V	G. Samolyk	0.0001	IU Cnc	57769.8131	12498	0.0113	V	K. Menzies	0.0001
BX And	57649.6626	34618	-0.0879	V	N. Simmons	0.0001	R CMa	57712.8909	11817	0.1210	V	G. Samolyk	0.0001
CN And	57699.5678	34837	-0.1500	V	G. Persha	0.0002	UU CMa	57696.8943	6046	-0.0812	V	G. Samolyk	0.0001
DS And	57606.8394	21241	0.0043	V	G. Samolyk	0.0002	XZ CMi	57669.9872	26305	0.0016	V	G. Samolyk	0.0001
DS And	57680.6066	21314	0.0036	V	G. Samolyk	0.0001	YY CMi	57433.6938	26883	0.0152	C	G. Frey	0.0001
DS And	57693.7430	21327	0.0033	V	K. Menzies	0.0001	AC CMi	57432.6799	6289	0.0037	C	G. Frey	0.0001
MW And	57667.7432	12188.5	-0.0075	V	K. Menzies	0.0002	AC CMi	57698.9155	6596	0.0038	V	G. Samolyk	0.0001
QX And	57606.8365	12390	0.0014	V	G. Samolyk	0.0002	AC CMi	57745.7449	6650	0.0035	V	G. Silvis	0.0001
QX And	57627.8546	12441	-0.0013	V	K. Menzies	0.0003	AP CMi	57417.6932	2273	-0.0214	C	G. Frey	0.0001
QX And	57680.6184	12569	0.0045	V	G. Samolyk	0.0002	CW CMi	57431.7048	16619.5	-0.0249	C	G. Frey	0.0002
QX And	57680.8213	12569.5	0.0013	V	G. Samolyk	0.0002	CX CMi	57445.6668	4897	0.0192	C	G. Frey	0.0001
QX And	57711.5277	12644	0.0009	V	K. Menzies	0.0001	CZ CMi	57423.7355	11547	-0.0088	C	G. Frey	0.0001
V404 And	57680.7620	7663	0.0007	C	G. Frey	0.0001	TY Cap	57611.7084	9005	0.0910	V	G. Samolyk	0.0001
V463 And	57685.7127	12769	-0.0025	C	G. Frey	0.0001	RZ Cas	57673.6293	12109	0.0771	V	G. Samolyk	0.0001
RY Aqr	57634.7256	8548	-0.1339	V	G. Samolyk	0.0001	RZ Cas	57673.6315	12109	0.0793	V	S. Cook	0.0003
SU Aqr	57688.6788	21393	-0.0206	C	G. Frey	0.0001	TV Cas	57676.6760	7213	-0.0295	V	G. Samolyk	0.0001
CX Aqr	57608.8452	38050	0.0153	V	G. Samolyk	0.0001	TW Cas	57622.8332	10932	0.0079	V	N. Simmons	0.0001
CX Aqr	57666.6675	38154	0.0150	C	G. Frey	0.0001	ZZ Cas	57611.6796	19440	0.0197	V	G. Samolyk	0.0002
CX Aqr	57686.6835	38190	0.0155	V	G. Samolyk	0.0001	AB Cas	57640.8584	10920	0.1338	V	G. Samolyk	0.0002
CZ Aqr	57606.8496	16500	-0.0604	V	G. Samolyk	0.0001	AB Cas	57673.6637	10944	0.1341	V	G. Samolyk	0.0001
CZ Aqr	57664.6536	16567	-0.0609	V	G. Samolyk	0.0001	AB Cas	57736.5410	10990	0.1352	V	G. Samolyk	0.0001
DD Aqr	57656.6598	13634	0.0026	C	G. Frey	0.0002	CW Cas	57607.6551	50101.5	-0.0996	V	G. Samolyk	0.0001
EF Aqr	57698.7061	1821	0.0014	C	G. Frey	0.0001	CW Cas	57642.7298	50211.5	-0.1000	V	G. Samolyk	0.0001
EX Aqr	57668.6978	5811	0.0162	C	G. Frey	0.0008	DZ Cas	57604.8500	37165	-0.2023	V	G. Samolyk	0.0002
FS Aqr	57663.6904	19704	-0.0009	C	G. Frey	0.0001	IR Cas	57606.6543	22393	0.0121	V	G. Samolyk	0.0001
GK Aqr	57661.6977	33649	0.0154	C	G. Frey	0.0001	IS Cas	57610.7344	15658	0.0702	V	G. Samolyk	0.0001
XZ Aql	57643.7342	7358	0.1794	V	G. Samolyk	0.0001	IS Cas	57728.5912	15722	0.0702	V	K. Menzies	0.0001
KO Aql	57622.6925	5494	0.1019	V	G. Samolyk	0.0001	IT Cas	57671.6601	7419	0.0688	V	G. Samolyk	0.0001
OO Aql	57634.5794	37533	0.0652	V	G. Samolyk	0.0001	IV Cas	57623.6960	16794	-0.1215	V	N. Simmons	0.0001
OO Aql	57637.6190	37539	0.0640	V	N. Simmons	0.0001	IV Cas	57649.6581	16820	-0.1210	V	G. Samolyk	0.0001
OO Aql	57647.7535	37559	0.0628	V	S. Cook	0.0004	IV Cas	57684.6057	16855	-0.1217	V	G. Samolyk	0.0001
OO Aql	57657.6375	37578.5	0.0644	V	G. Samolyk	0.0001	IV Cas	57702.5796	16873	-0.1213	V	G. Samolyk	0.0001
V343 Aql	57604.7087	15809	-0.0371	V	G. Samolyk	0.0001	MM Cas	57604.8310	19166	0.1120	V	G. Samolyk	0.0003
V346 Aql	57648.6397	14218	-0.0134	V	S. Cook	0.0004	MM Cas	57676.6588	19228	0.1146	V	G. Samolyk	0.0001
V609 Aql	57643.7130	35500	-0.0695	C	G. Frey	0.0002	OR Cas	57646.6041	10786	-0.0302	V	G. Samolyk	0.0003
V724 Aql	57657.7126	5110	-0.0146	C	G. Frey	0.0001	OX Cas	57635.8405	6574.5	0.0214	V	G. Samolyk	0.0002
V1470 Aql	57632.3620	10937	-0.1050	V	L. Corp	0.0005	PV Cas	57600.7830	9925	-0.0348	V	S. Cook	0.0002
V1542 Aql	57630.7437	13217	0.0161	C	G. Frey	0.0001	PV Cas	57686.5559	9974	-0.0349	V	G. Samolyk	0.0001
RX Ari	57753.5447	18798	0.0654	V	G. Silvis	0.0001	V364 Cas	57633.6008	15100	-0.0240	V	G. Samolyk	0.0001
RX Ari	57754.5725	18799	0.0636	V	G. Samolyk	0.0002	V364 Cas	57697.6376	15141.5	-0.0245	V	K. Menzies	0.0001
SS Ari	57643.8535	45852.5	-0.3630	V	G. Samolyk	0.0001	V375 Cas	57606.6633	15586	0.2404	V	N. Simmons	0.0001
SS Ari	57755.4970	46127.5	-0.3678	V	G. Silvis	0.0001	V375 Cas	57634.6586	15605	0.2414	V	G. Samolyk	0.0001
SX Aur	57698.8370	14492	0.0192	V	G. Samolyk	0.0001	V380 Cas	57686.5768	23607	-0.0719	V	G. Samolyk	0.0002
WW Aur	57719.7670	9811.5	0.0016	V	G. Samolyk	0.0001	V523 Cas	57573.8554	69979	0.1117	V	B. Harris	0.0001
AP Aur	57680.8776	26761.5	1.6121	V	G. Samolyk	0.0002	U Cep	57622.8289	5247	0.2056	V	G. Samolyk	0.0001
AP Aur	57702.7957	26800	1.6117	V	G. Samolyk	0.0001	U Cep	57647.7644	5257	0.2106	V	S. Cook	0.0007
AP Aur	57733.8279	26854.5	1.6164	V	K. Menzies	0.0001	U Cep	57702.6056	5279	0.2047	V	G. Samolyk	0.0001
AR Aur	57702.8133	4668	-0.1262	V	G. Samolyk	0.0001	SU Cep	57635.6374	34735	0.0052	V	G. Samolyk	0.0002
CL Aur	57696.6955	19873	0.1778	V	G. Samolyk	0.0001	WW Cep	57635.7111	21261	0.3465	V	G. Samolyk	0.0001
EM Aur	57677.8640	14647	-1.1094	V	K. Menzies	0.0003	WZ Cep	57642.6077	70912.5	-0.1658	V	G. Samolyk	0.0001
EP Aur	57642.8721	53017	0.0190	V	G. Samolyk	0.0001	XX Cep	57608.6315	5463	0.0141	V	G. Samolyk	0.0001
EP Aur	57719.7027	53147	0.0185	V	G. Samolyk	0.0001	XX Cep	57622.6564	5469	0.0150	V	N. Simmons	0.0001
EP Aur	57754.5707	53206	0.0171	V	G. Samolyk	0.0001	DL Cep	57601.6895	14508	0.0632	V	G. Samolyk	0.0002
HP Aur	57743.6184	10533.5	0.0681	V	G. Samolyk	0.0002	DL Cep	57650.6030	14538	0.0622	V	G. Samolyk	0.0002
IM Aur	57696.9191	13775	-0.1298	V	G. Samolyk	0.0002	DV Cep	57633.6217	9355	-0.0056	V	G. Samolyk	0.0001
V459 Aur	57719.7361	637.5	-0.0005	V	G. Samolyk	0.0002	EG Cep	57616.6986	27583	0.0122	V	S. Cook	0.0004

Table 1. Recent times of minima of stars in the AAVSO eclipsing binary program, cont.

Star	$\begin{gathered} J D \text { (min) } \\ \text { Hel. } \\ 2400000+ \end{gathered}$	Cycle	$\begin{aligned} & O-C \\ & (\text { day }) \end{aligned}$	F	Observer	Error (day)	Star	$\begin{gathered} \text { JD (min) } \\ \text { Hel. } \\ 2400000+ \end{gathered}$	Cycle	$\begin{aligned} & O-C \\ & \text { (day) } \end{aligned}$	F	Observer	Error (day)
EK Cep	57581.7515	4196	0.0098	V	S. Cook	0.0007	TW Dra	57586.6840	4792	-0.0218	V	S. Cook	0.0009
SS Cet	57719.7862	5134	0.0644	V	G. Samolyk	0.0001	UZ Dra	57576.7549	4908	-0.0003	V	S. Cook	0.0004
TT Cet	57684.7692	51731	-0.0765	V	G. Samolyk	0.0001	UZ Dra	57607.7415	4917.5	0.0039	V	G. Samolyk	0.0001
TT Cet	57687.6844	51737	-0.0770	C	G. Frey	0.0002	AI Dra	57582.7287	11921	0.0329	V	S. Cook	0.0008
TW Cet	57640.8540	48185	-0.0328	V	G. Samolyk	0.0003	BH Dra	57610.6642	9680	-0.0034	V	G. Samolyk	0.0002
TW Cet	57697.7305	48364.5	-0.0312	V	G. Samolyk	0.0002	S Equ	57629.7350	4375	0.0676	V	S. Cook	0.0004
TW Cet	57768.5457	48588	-0.0324	V	G. Samolyk	0.0002	TZ Eri	57701.7763	5866	0.3343	V	G. Samolyk	0.0001
TX Cet	57643.8625	19655	0.0131	V	G. Samolyk	0.0001	TZ Eri	57761.7170	5889	0.3354	V	G. Samolyk	0.0001
TX Cet	57675.7177	19698	0.0122	C	G. Frey	0.0001	YY Eri	57684.9425	50088.5	0.1588	V	G. Samolyk	0.0001
VV Cet	57706.7024	50495	0.1364	C	G. Frey	0.0002	YY Eri	57760.6547	50324	0.1591	V	G. Samolyk	0.0001
RW Com	57769.9632	74775	0.0072	V	K. Menzies	0.0001	RW Gem	57754.8235	13768	0.0031	V	G. Samolyk	0.0001
RZ Com	57748.9158	67684	0.0532	V	K. Menzies	0.0001	SX Gem	57728.8668	28311	-0.0579	V	K. Menzies	0.0001
SS Com	57748.9577	79327	0.9046	V	K. Menzies	0.0003	SX Gem	57750.7374	28327	-0.0574	V	G. Samolyk	0.0002
SS Com	57767.9471	79373	0.9056	V	K. Menzies	0.0001	TX Gem	57698.9625	13518	-0.0388	V	R. Sabo	0.0001
CC Com	57728.9196	82449	-0.0265	V	K. Menzies	0.0001	WW Gem	57701.9589	25624	0.0328	V	G. Samolyk	0.0001
UCrB	57580.7408	11828	0.1317	V	S. Cook	0.0005	AF Gem	57698.9572	24557	-0.0673	V	G. Samolyk	0.0001
RW CrB	57606.6567	23203	0.0028	V	G. Samolyk	0.0001	EG Gem	57446.6574	23639	0.3089	C	G. Frey	0.0001
SW Cyg	57635.6256	3448	-0.3581	V	G. Samolyk	0.0002	KK Gem	57437.6822	7574	0.0100	V	K. Menzies	0.0003
WW Cyg	57623.7880	5198	0.1387	V	G. Samolyk	0.0001	V337 Gem	57424.7116	1766.5	0.1082	C	G. Frey	0.0002
ZZ Cyg	57602.7903	20048	-0.0691	V	G. Samolyk	0.0001	V380 Gem	57711.7790	18116	0.0220	V	K. Menzies	0.0001
AE Cyg	57623.7301	13452	-0.0048	V	K. Menzies	0.0001	V383 Gem	57769.7523	5842	-0.0047	V	K. Menzies	0.0001
AE Cyg	57693.5122	13524	-0.0042	V	K. Menzies	0.0001	V388 Gem	57399.7296	9656	0.0064	C	G. Frey	0.0001
CG Cyg	57583.7539	28771	0.0741	V	S. Cook	0.0002	RX Her	57634.6609	13755	-0.0005	V	S. Cook	0.0007
CG Cyg	57607.7380	28809	0.0748	V	K. Menzies	0.0001	TT Her	57539.7260	19235	0.0465	V	G. Persha	0.0002
DK Cyg	57649.6155	41747	0.1133	V	G. Samolyk	0.0001	TT Her	57539.7278	19235	0.0483	B	G. Persha	0.0004
DK Cyg	57715.5138	41887	0.1149	V	G. Silvis	0.0001	TT Her	57612.6906	19315	0.0451	V	S. Cook	0.0005
DK Cyg	57715.5140	41887	0.1151	I	G. Silvis	0.0002	TT Her	57615.4284	19318	0.0467	V	L. Corp	0.0003
DK Cyg	57715.5141	41887	0.1152	B	G. Silvis	0.0001	UX Her	57609.7114	11581	0.1253	V	S. Cook	0.0003
DO Cyg	57575.7546	7654	-0.0321	V	B. Harris	0.0001	BC Her	57646.7517	1667	0.0126	C	G. Frey	0.0002
GO Cyg	57634.6225	33025	0.0668	B	G. Persha	0.0001	CC Her	57575.7113	10327	0.2914	V	S. Cook	0.0008
GO Cyg	57634.6225	33025	0.0668	V	G. Persha	0.0001	V728 Her	57607.6309	10837	0.0131	V	K. Menzies	0.0002
KV Cyg	57642.6235	9924	0.0620	V	G. Samolyk	0.0002	V899 Her	57544.7532	11977	-0.0004	C	G. Frey	0.0003
MY Cyg	57710.5141	5958	0.0012	V	K. Menzies	0.0002	V1033 Her	57564.6960	16992	-0.0049	C	G. Frey	0.0001
V346 Cyg	57649.6547	8006	0.1890	V	G. Samolyk	0.0002	V1034 Her	57562.7508	6209	-0.0034	C	G. Frey	0.0001
V348 Cyg	57607.8391	7811.5	0.0743	V	K. Menzies	0.0001	V1092 Her	57547.7223	13337	-0.0127	C	G. Frey	0.0002
V348 Cyg	57668.6668	8025.5	0.0762	V	K. Menzies	0.0001	V1097 Her	57551.7259	14101	0.0013	C	G. Frey	0.0001
V382 Cyg	57636.6227	410	-0.0118	V	G. Persha	0.0002	WY Hya	57725.8128	23959	0.0376	V	B. Harris	0.0001
V382 Cyg	57636.6228	410	-0.0118	B	G. Persha	0.0003	DF Hya	57754.9414	45272	0.0053	V	G. Samolyk	0.0001
V387 Cyg	57624.5966	46268	0.0214	V	K. Menzies	0.0002	EU Hya	57450.7670	29972	-0.0332	C	G. Frey	0.0002
V387 Cyg	57699.5458	46385	0.0208	V	G. Samolyk	0.0002	V390 Hya	57434.6403	3060	-0.0777	C	G. Frey	0.0001
V388 Cyg	57611.7523	18228	-0.1151	V	G. Samolyk	0.0001	V470 Hya	57448.7317	12006	0.0074	C	G. Frey	0.0003
V388 Cyg	57673.5988	18300	-0.1193	V	G. Samolyk	0.0001	V474 Hya	57435.6820	9939	-0.0114	C	G. Frey	0.0001
V401 Cyg	57675.5724	23751	0.0832	V	G. Samolyk	0.0001	SW Lac	57610.6711	38461.5	-0.0835	V	G. Samolyk	0.0001
V456 Cyg	57637.6282	14280	0.0506	V	G. Samolyk	0.0001	SW Lac	57610.8321	38462	-0.0829	V	G. Samolyk	0.0001
V466 Cyg	57609.7370	20721.5	0.0071	V	K. Menzies	0.0001	SW Lac	57615.4817	38476.5	-0.0837	V	L. Corp	0.0002
V477 Cyg	57604.6265	5716	-0.0357	V	G. Samolyk	0.0002	SW Lac	57637.6108	38545.5	-0.0844	V	G. Samolyk	0.0002
V704 Cyg	57623.5975	34491	0.0368	V	G. Samolyk	0.0002	SW Lac	57640.6621	38555	-0.0799	V	S. Cook	0.0005
V1034 Cyg	57621.7429	15030	0.0110	V	R. Sabo	0.0001	SW Lac	57671.6139	38651.5	-0.0777	V	G. Persha	0.0001
V1073 Cyg	57638.3537	24134	-0.1659	V	G. Persha	0.0005	SW Lac	57732.5482	38841.5	-0.0803	V	G. Silvis	0.0001
V2247 Cyg	57680.5592	640	-0.0116	V	K. Menzies	0.0001	VX Lac	57606.6364	11492	0.0831	V	G. Samolyk	0.0001
V2477 Cyg	57621.6623	19691	0.0035	V	K. Menzies	0.0001	VX Lac	57622.7549	11507	0.0841	V	S. Cook	0.0004
V2643 Cyg	57666.5592	10354	-0.0078	V	K. Menzies	0.0002	VX Lac	57623.8290	11508	0.0837	V	K. Menzies	0.0001
W Del	57650.7615	2980	0.0340	V	G. Samolyk	0.0002	AR Lac	57643.6348	8093	-0.0507	V	G. Samolyk	0.0001
TT Del	57606.8296	4310	-0.1123	V	G. Samolyk	0.0002	CM Lac	57640.6180	19078	-0.0043	V	G. Samolyk	0.0001
TY Del	57649.6824	12333	0.0695	V	S. Cook	0.0002	CO Lac	57601.7090	19496.5	-0.0123	V	G. Samolyk	0.0001
YY Del	57631.7268	18500	0.0091	C	G. Frey	0.0001	CO Lac	57604.7940	19498.5	-0.0117	V	K. Menzies	0.0001
YY Del	57643.6244	18515	0.0103	V	G. Samolyk	0.0001	CO Lac	57608.6684	19501	0.0071	V	G. Samolyk	0.0001
YY Del	57697.5546	18583	0.0102	V	G. Samolyk	0.0001	DG Lac	57633.6249	5948	-0.2263	V	G. Samolyk	0.0001
FZ Del	57634.7674	33593	-0.0225	V	S. Cook	0.0006	DG Lac	57633.6249	5948	-0.2263	V	N. Simmons	0.0001
FZ Del	57642.5971	33603	-0.0249	V	G. Samolyk	0.0001	DG Lac	57666.7234	5963	-0.2258	V	K. Menzies	0.0001
FZ Del	57671.5769	33640	-0.0240	V	N. Simmons	0.0001	UV Leo	57458.6546	31692	0.0414	C	G. Frey	0.0004
LS Del	57613.4178	14053	-0.0038	V	L. Corp	0.0002	VZ Leo	57463.6902	24130	-0.0576	C	G. Frey	0.0002
LS Del	57636.7060	14117	-0.0016	C	G. Frey	0.0004	WZ Leo	57444.6775	3511	0.0004	C	G. Frey	0.0001
MZ Del	57627.4107	12450	-0.0242	V	L. Corp	0.0002	XX Leo	57502.6881	9074	-0.0116	C	G. Frey	0.0001
MZ Del	57634.3831	12459.5	-0.0164	V	L. Corp	0.0006	XZ Leo	57753.8513	26097	0.0704	V	K. Menzies	0.0001

Table 1. Recent times of minima of stars in the AAVSO eclipsing binary program, cont.

Star	$\begin{gathered} J D \text { (min) } \\ \mathrm{Hel} . \\ 2400000+ \end{gathered}$	Cycle	$\begin{aligned} & O-C \\ & \text { (day) } \end{aligned}$	F	Observer	Error (day)	Star	$\begin{gathered} J D(\text { min }) \\ \text { Hel. } \\ 2400000+ \end{gathered}$	Cycle	$\begin{aligned} & O-C \\ & \text { (day) } \end{aligned}$	F	Observer	Error (day)
CE Leo	57473.7462	32278	-0.0080	C	G. Frey	0.0001	V351 Peg	57684.7322	15481	0.0316	C	G. Frey	0.0002
GV Leo	57457.7023	17633	-0.0314	C	G. Frey	0.0001	V534 Peg	57700.5856	4682	0.0141	V	K. Menzies	0.0003
HI Leo	57492.7329	15251	0.0091	C	G. Frey	0.0001	V613 Peg	57748.5327	2434	0.0012	V	K. Menzies	0.0002
Z Lep	57657.8969	30425	-0.1930	V	G. Samolyk	0.0001	Z Per	57697.7321	3939	-0.3046	V	G. Samolyk	0.0001
RR Lep	57699.8977	29847	-0.0438	V	G. Samolyk	0.0002	RT Per	57675.8076	28608	0.1049	V	G. Samolyk	0.0001
δ Lib	57585.7528	6284	-0.0410	V	S. Cook	0.0006	RT Per	57693.6451	28629	0.1050	V	K. Menzies	0.0001
RY Lyn	57753.8968	10360	-0.0219	V	K. Menzies	0.0001	RV Per	57684.8722	7924	0.0038	V	G. Samolyk	0.0001
UZ Lyr	57609.6679	7360	-0.0407	V	G. Samolyk	0.0001	ST Per	57701.7103	5764	0.3146	V	G. Samolyk	0.0002
EW Lyr	57556.7701	15937	0.2746	V	G. Samolyk	0.0001	XZ Per	57696.6878	12321	-0.0736	V	G. Samolyk	0.0001
FL Lyr	57637.6182	8914	-0.0026	V	G. Samolyk	0.0001	BB Per	57681.8405	3858.5	0.1099	V	K. Menzies	0.0002
FL Lyr	57650.6883	8920	-0.0014	V	S. Cook	0.0008	IQ Per	57612.9622	7641	-0.0030	V	S. Cook	0.0009
β Lyr	57576.89	663.5	2.09	V	G. Samolyk	0.05	IT Per	57667.8768	18442	-0.0401	V	K. Menzies	0.0003
β Lyr	57576.94	663.5	2.15	B	G. Samolyk	0.03	IU Per	57675.7878	14077	0.0095	V	G. Samolyk	0.0002
β Lyr	57576.99	663.5	2.20	R	G. Samolyk	0.03	KW Per	57707.7255	16433	0.0170	V	G. Samolyk	0.0001
β Lyr	57583.34	664	2.08	V	G. Samolyk	0.03	V432 Per	57642.8887	67705.5	0.0435	V	G. Samolyk	0.0003
β Lyr	57583.35	664	2.08	R	G. Samolyk	0.01	V432 Per	57693.8678	67864	0.0621	V	K. Menzies	0.0001
β Lyr	57583.41	664	2.14	B	G. Samolyk	0.01	V432 Per	57737.5644	68000	0.0324	V	G. Samolyk	0.0002
U Oph	57608.7043	7865	-0.0097	V	S. Cook	0.0006	V737 Per	57769.6378	17005	-0.0649	V	K. Menzies	0.0001
V423 Oph	57635.6839	4266	-0.0334	C	G. Frey	0.0002	V740 Per	57724.7910	16960	0.0037	V	K. Menzies	0.0001
V501 Oph	57629.7192	27603	-0.0107	C	G. Frey	0.0001	V881 Per	57755.6725	2007	-0.0096	V	K. Menzies	0.0001
V508 Oph	57523.6519	36083	-0.0255	V	B. Harris	0.0001	V996 Per	57755.6421	4990	-0.0305	V	K. Menzies	0.0003
V508 Oph	57625.3650	36378	-0.0261	R	L. Corp	0.0001	β Per	57675.7178	4197	0.1282	V	G. Samolyk	0.0001
V508 Oph	57642.6042	36428	-0.0265	V	G. Samolyk	0.0001	β Per	57698.6591	4205	0.1310	V	G. Samolyk	0.0006
V839 Oph	57614.6597	41971	0.3042	V	G. Samolyk	0.0001	Y Psc	57719.5663	3209	-0.0210	V	G. Samolyk	0.0001
CQ Ori	57474.6546	6941	-0.0060	C	G. Frey	0.0003	RV Psc	57671.8732	60092	-0.0610	V	G. Samolyk	0.0002
ER Ori	57664.8881	37880	0.1303	V	G. Samolyk	0.0002	UV Psc	57682.6812	16580	-0.0205	C	G. Frey	0.0001
ER Ori	57696.8557	37955.5	0.1313	V	R. Sabo	0.0001	VZ Psc	57634.5067	52830	0.0021	V	L. Corp	0.0002
ER Ori	57755.7090	38094.5	0.1322	V	G. Silvis	0.0001	VZ Psc	57665.7279	52949.5	0.0029	C	G. Frey	0.0001
ET Ori	57701.8975	32618	-0.0029	V	G. Samolyk	0.0001	VZ Psc	57692.3753	53051.5	0.0018	V	L. Corp	0.0002
FR Ori	57768.7205	33863	0.0409	V	G. Samolyk	0.0001	VZ Psc	57723.3341	53170	0.0014	V	L. Corp	0.0002
FT Ori	57768.6666	5212	0.0205	V	G. Samolyk	0.0001	AQ Psc	57741.2984	11019.5	0.0016	V	L. Corp	0.0001
FZ Ori	57684.9696	34152.5	-0.0311	V	G. Samolyk	0.0002	CP Psc	57673.7036	7563	0.0019	C	G. Frey	0.0001
FZ Ori	57754.7637	34327	-0.0346	V	G. Samolyk	0.0003	DS Psc	57726.6456	15260	-0.0035	C	G. Frey	0.0001
FZ Ori	57769.5628	34364	-0.0350	V	G. Silvis	0.0015	DV Psc	57727.6480	16943	0.0057	C	G. Frey	0.0001
GU Ori	57686.8386	31055	-0.0629	V	G. Samolyk	0.0002	DZ Psc	57678.7019	14144	0.0126	C	G. Frey	0.0001
GU Ori	57748.7338	31186.5	-0.0622	V	K. Menzies	0.0001	ET Psc	57707.6454	11564	-0.0067	C	G. Frey	0.0001
GU Ori	57750.6165	31190.5	-0.0622	V	G. Silvis	0.0001	ET Psc	57753.3318	11668	-0.0072	V	L. Corp	0.0002
V343 Ori	57422.7512	29443	0.2754	C	G. Frey	0.0001	ET Psc	57757.2886	11677	-0.0041	V	L. Corp	0.0004
V1363 Ori	57425.7344	11404	0.0273	C	G. Frey	0.0002	GR Psc	57703.6649	12615	-0.0005	C	G. Frey	0.0001
V1853 Ori	57416.6789	8747	0.0001	C	G. Frey	0.0001	HO Psc	57695.6654	1155	0.0010	C	G. Frey	0.0001
V2790 Ori	57755.7640	21658	-0.0022	V	K. Menzies	0.0001	AO Ser	57607.6326	26695	-0.0116	V	G. Samolyk	0.0001
U Peg	57606.8290	56287	-0.1621	V	N. Simmons	0.0001	CC Ser	57614.6384	39015	1.0865	V	G. Samolyk	0.0002
U Peg	57606.8294	56287	-0.1617	V	G. Samolyk	0.0001	CC Ser	57620.5743	39026.5	1.0883	V	K. Menzies	0.0004
U Peg	57638.8730	56372.5	-0.1619	V	B. Harris	0.0001	RW Tau	57686.8355	4335	-0.2708	V	G. Samolyk	0.0001
U Peg	57683.4724	56491.5	-0.1615	V	L. Corp	0.0001	RW Tau	57761.5917	4362	-0.2732	V	G. Samolyk	0.0001
TY Peg	57634.8264	5557	-0.4241	V	G. Samolyk	0.0002	RZ Tau	57664.7827	48086	0.0821	V	G. Samolyk	0.0002
UX Peg	57607.7926	11124	-0.0059	V	G. Samolyk	0.0001	RZ Tau	57666.8619	48091	0.0829	V	K. Menzies	0.0001
AQ Peg	57435.9899	2922	0.5599	V	G. Samolyk	0.0001	RZ Tau	57698.8694	48168	0.0835	V	R. Sabo	0.0001
AQ Peg	57635.7494	2958	0.5733	V	G. Samolyk	0.0002	RZ Tau	57706.7673	48187	0.0835	V	K. Menzies	0.0001
AT Peg	57677.7280	10870	0.0213	C	G. Frey	0.0001	RZ Tau	57726.7195	48235	0.0833	V	K. Menzies	0.0001
BB Peg	57622.8551	38336	-0.0228	V	R. Sabo	0.0001	RZ Tau	57742.7242	48273.5	0.0846	C	G. Frey	0.0001
BB Peg	57657.7413	38432.5	-0.0216	V	G. Samolyk	0.0001	RZ Tau	57760.3901	48316	0.0843	V	L. Corp	0.0003
BB Peg	57670.5730	38468	-0.0232	V	N. Simmons	0.0001	TY Tau	57696.7004	33883	0.2690	V	G. Samolyk	0.0001
BG Peg	57607.8184	6185	-2.2728	V	R. Sabo	0.0003	WY Tau	57675.8962	29265	0.0636	V	G. Samolyk	0.0001
BN Peg	57667.7330	33326	-0.0021	C	G. Frey	0.0001	WY Tau	57698.7568	29298	0.0632	V	G. Samolyk	0.0001
BO Peg	57641.6874	20725	-0.0494	C	G. Frey	0.0002	AM Tau	57698.8116	6089	-0.0708	V	G. Samolyk	0.0001
BX Peg	57622.7867	47883.5	-0.1198	V	G. Samolyk	0.0001	CT Tau	57750.6561	18515	-0.0659	V	G. Samolyk	0.0002
BX Peg	57697.5162	48150	-0.1224	V	K. Menzies	0.0001	EQ Tau	57634.8643	51037.5	-0.0337	V	G. Samolyk	0.0001
BX Peg	57698.6379	48154	-0.1224	V	G. Samolyk	0.0001	EQ Tau	57670.8753	51143	-0.0350	V	R. Sabo	0.0001
DF Peg	57655.7010	1643	0.1169	C	G. Frey	0.0005	EQ Tau	57676.8497	51160.5	-0.0342	V	K. Menzies	0.0001
DI Peg	57649.7293	17495	0.0064	V	G. Samolyk	0.0001	EQ Tau	57702.7923	51236.5	-0.0341	V	G. Samolyk	0.0001
DI Peg	57684.6082	17544	0.0063	V	G. Samolyk	0.0001	EQ Tau	57728.7346	51312.5	-0.0343	V	K. Menzies	0.0001
DI Peg	57736.5709	17617	0.0063	V	G. Samolyk	0.0001	EQ Tau	57731.6340	51321	-0.0363	C	G. Frey	0.0002
DK Peg	57700.6724	7458	0.1547	C	G. Frey	0.0001	EQ Tau	57731.6362	51321	-0.0342	V	G. Silvis	0.0001
KW Peg	57698.6328	11685.5	0.2101	V	G. Samolyk	0.0002	GQ Tau	57443.6963	13677	0.1989	C	G. Frey	0.0001

Table 1. Recent times of minima of stars in the AAVSO eclipsing binary program, cont.

Star	$\begin{gathered} J D(\text { min }) \\ \text { Hel. } \\ 2400000+ \end{gathered}$	Cycle	$\begin{aligned} & O-C \\ & \text { (day) } \end{aligned}$	F	Observer	Error (day)	Star	$\begin{gathered} J D \text { (min) } \\ \text { Hel. } \\ 2400000+ \end{gathered}$	Cycle	$\begin{aligned} & O-C \\ & (\text { day } \end{aligned}$	F	Observer	Error (day)
HU Tau	57760.7090	8017	0.0324	V	G. Samolyk	0.0001	AZ Vir	57579.7118	38903.5	-0.0248	V	S. Cook	0.0005
V781 Tau	57724.7641	40155	-0.0509	V	G. Silvis	0.0001	BF Vir	57535.7248	17898	0.1189	C	G. Frey	0.0001
V1121 Tau	57750.6304	11223	-0.0119	C	G. Frey	0.0002	BH Vir	57783.9818	17816	-0.0118	V	G. Samolyk	0.0001
V1128 Tau	57692.5295	17003.5	0.0001	V	L. Corp	0.0001	GR Vir	57543.7320	35816.5	0.0075	C	G. Frey	0.0002
V1128 Tau	57725.5092	17111.5	-0.0004	V	L. Corp	0.0001	HT Vir	57542.7585	12369	0.0037	C	G. Frey	0.0002
V1128 Tau	57773.2988	17268	-0.0013	R	L. Corp	0.0001	IR Vir	57519.6899	20829.5	-0.0048	C	G. Frey	0.0001
V1223 Tau	57752.6897	12279	0.0016	C	G. Frey	0.0002	MS Vir	57538.7102	16127	0.0033	C	G. Frey	0.0001
V1332 Tau	57749.6602	14947	0.0122	C	G. Frey	0.0003	NN Vir	57517.7231	18759	0.0074	C	G. Frey	0.0002
V Tri	57633.8085	56663	-0.0071	V	N. Simmons	0.0001	V391 Vir	57520.7296	17671	0.0036	C	G. Frey	0.0002
V Tri	57640.8298	56675	-0.0082	V	G. Samolyk	0.0003	AW Vul	57609.6305	14042	-0.0252	V	K. Menzies	0.0001
X Tri	57614.8615	15555	-0.0895	V	G. Samolyk	0.0001	AW Vul	57697.5328	14151	-0.0261	V	G. Samolyk	0.0001
RS Tri	57680.6109	10341	-0.0560	V	G. Samolyk	0.0001	AW Vul	57697.5329	14151	-0.0260	V	K. Menzies	0.0001
RS Tri	57745.5146	10375	-0.0557	V	K. Menzies	0.0002	BE Vul	57680.6217	11320	0.1026	V	G. Samolyk	0.0001
RV Tri	57642.7453	15404	-0.0412	V	G. Samolyk	0.0001	BO Vul	57697.5274	11156	-0.0182	V	G. Samolyk	0.0001
W UMa	57760.7401	35952.5	-0.1003	V	G. Samolyk	0.0001	BS Vul	57640.6474	30189	-0.0333	V	G. Samolyk	0.0001
W UMa	57760.9062	35953	-0.1010	V	G. Samolyk	0.0001	BS Vul	57702.5248	30319	-0.0322	V	G. Samolyk	0.0001
TX UMa	57720.0013	4153	0.2256	V	G. Samolyk	0.0004	BT Vul	57607.6557	19458	0.0061	V	G. Samolyk	0.0002
TY UMa	57712.9126	51278	0.3858	V	G. Samolyk	0.0002	BT Vul	57623.6327	19472	0.0063	V	G. Samolyk	0.0001
ZZ UMa	57697.8829	9458	-0.0022	V	G. Samolyk	0.0001	BU Vul	57606.6531	42308	0.0143	V	G. Samolyk	0.0001
BM UMa	57747.8946	75213	0.0141	V	B. Harris	0.0001	CD Vul	57623.7158	16563.5	0.0005	V	G. Samolyk	0.0002
AG Vir	57491.7436	18765	-0.0123	C	G. Frey	0.0001	CD Vul	57646.6209	16597	0.0001	V	N. Simmons	0.0002
AW Vir	57505.6676	35263	0.0282	C	G. Frey	0.0001	V495 Vul	57667.5354	732.5	0.0722	V	K. Menzies	0.0001
AZ Vir	57518.6936	38729	-0.0264	C	G. Frey	0.0001							

Abstracts of Papers and Posters presented at the 105th Annual Meeting of the AAVSO, Held in Burlington, Massachusetts, November 10-12, 2016

The Crucial Role of Amateur-Professional Networks in the Golden Age of Large Surveys

Joseph E. Rodriguez
Vanderbilt Astronomy Group, Physics and Astronomy Department, Vanderbilt University, 6301 Stevenson Center, Nashville,TN 37235; rodriguez.jr.joey@gmail.com

Abstract

With ongoing projects such as HATNet, SuperWASP, KELT, MEarth, and the CoRoT and Kepler/K2 missions, we are in a golden era of large photometric surveys. In addition, LSST and TESS will be coming online in the next three to five years. The combination of all these projects will increase the number of photometrically monitored stars by orders of magnitude. It is expected that these surveys will enhance our knowledge of circumstellar architecture and the early stages of stellar and planetary formation, while providing a better understanding of exoplanet demographics. However, the success of these surveys will be dependent on simultaneous and continued follow-up by large networks. With federal scientific funding reduced over the past few years, the availability of astronomical observations has been directly affected. Fortunately, ground based amateur-professional networks like the AAVSO and the KELT Follow-up Network (KELT-FUN) are already providing access to an international, independent resource for professional grade astronomical observations. These networks have both multi-band photometric and spectroscopic capabilities. I provide an overview of the ongoing and future surveys, highlight past and current contributions by amateur-professional networks to scientific discovery, and discuss the role of these networks in upcoming projects.

The Transiting Exoplanet Survey Satellite

Ryan J. Oelkers
 Department of Physics and Astronomy, Vanderbilt University, 6301 Stevenson Center, Nashville, TN 37235;
 ryan.j.oelkers@vanderbilt.edu

Abstract

The Transiting Exoplanet Survey Satellite (TESS) will be conducting a nearly all-sky, photometric survey over the course of two years, with a core mission goal to discover small transiting exoplanets orbiting nearby, bright stars. The satellite will obtain 30-minute cadence observations for more than 1 billion objects in the 26 TESS fields of view and 2-minute cadence observations of 200,000 to 400,000 selected stars. The TESS mission is expected to detect 1,500 transiting planet candidates, including 500 Earth-sized objects, over the course of its two-year mission. The choice of which stars to observe at the 2-minute cadence is driven by the need to detect small, transiting planets, leading to the selection of primarily bright, cool dwarfs. These stars will be 10 to 100 times brighter than the stars observed by Kepler, providing a unique opportunity

for an amateur-professional collaboration to heavily contribute to candidate follow-up. I describe the TESS science mission, its current status and the mission's photometric and spectroscopic follow-up needs.

Photometric Surveys (and Variability Studies) at the Observatorio Astrofísico de Javalambre

Alessandro Ederoclite

Centro de Estudio de Física del Cosmos de Aragón, Plaza San Juan 1, Planta 2, Teruel 44001, Spain; aederocl@cefca.es

Abstract

The Observatorio Astrofísico de Javalambre (OAJ) is a new astronomical facility located in mainland Spain. This observatory is equipped with telescopes with large field of view and a unique filter system. The first two surveys to be carried out at the OAJ are the Javalambre Photometry of the Local Universe Survey (J-PLUS) and the Javalambre Physics of the accelerating universe Astrophysical Survey (J-PAS), devoted to the study of the star formation in the local universe and the expansion of the universe through baryonic acoustic oscillations. I introduce the OAJ and its instrumentation but also the potential for the study of variable sources (both within the J-PLUS and J-PAS projects and through "open time" projects). Finally, I stress the use of APASS for the calibration of our instruments.

The Role of Small Telescopes in the Upcoming Era of the Giant Magellan Telescope and Other Extremely Large Telescopes

Charles Alcock

Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-45, Cambridge,MA 02138; calcock@cfa.harvard.edu

Abstract

The Giant Magellan Telescope will be a 25 -meter telescope located close to the twin Magellan Telescopes at the Las Campanas Observatory. I describe this telescope and some of the science goals we have developed, and also discuss the evolving balance between astronomy conducted with telescopes of a range of sizes, from 10 cm to 25 meters.

Big Software for Big Data: Scaling Up Photometry for LSST

Meredith Rawls

Department of Astronomy, University of Washington, Seattle, WA 98195; meredith.rawls@gmail.com

Abstract

The Large Synoptic Survey Telescope (LSST) will capture mosaics of the sky every few nights, each containing more data than your computer's hard drive can store. As a result, the software to process these images is as critical to the science

as the telescope and the camera. I discuss the algorithms and software being developed by the LSST Data Management team to handle such a large volume of data. All of our work is open source and available to the community. Once LSST comes online, our software will produce catalogs of objects and a stream of alerts. These will bring exciting new opportunities for follow-up observations and collaborations with LSST scientists.

The Galactic Plane Exoplanet Survey (GPX)—an Amateur Designed Transiting Exoplanet WideField Search

Paul Benni

3 Concetta Circle, Acton, MA 01720; pbenni@verizon.net
Abstract GPX is designed to search high density star fields that other surveys such as WASP, HATNet, XO, and KELT would find challenging due to blending of transit-like events. Using readily available amateur equipment, a survey telescope (Celestron RASA, 279 mm f/2.2, based in Acton, Massachusetts) was configured first with a SBIG ST-8300M camera then later upgraded to an FLI ML16200 camera and tested under different sampling scenarios with multiple image fields to obtain a 9 - to 11-minute cadence per field. The resultant image resolution of GPX is about $2 \mathrm{arcsec} / \mathrm{pixel}$ compared to $13.7-23 \mathrm{arcsec} /$ pixel of the aforementioned surveys and the future TESS space telescope exoplanet survey.

GPX is based on the Kourovka Planet Search (KPS) prototype survey and uses the K-pipe data reduction pipeline. K-pipe performs all steps of the data handling from basic photometric reduction of the FITS files to the search of the transit-like events in the photometric time-series. K-pipe consists of several sequential scripts for astrometry (Astrometry. net), photometry (IRAF), and Box-fitting Least Squares transit search, and runs on a cinux based laptop computer potentially operable by advanced amateurs.

One Hot Jupiter was discovered with the RASA telescope and validated by RV measurements from the SOPHIE spectrograph in the frames of KPS prototype survey (publication pending). Several more GPX exoplanet candidate stars of magnitude 1113 have been identified, with some showing achromatic transit events, a sign of a possible Hot Jupiter, and are now awaiting RV follow-up. This survey demonstrates that advanced amateurs can operate star survey equipment, and with professional help with follow-up and validation, expanded ground-based surveys can be conducted in star fields that are challenging for other surveys.

The AAVSO Photometric All-Sky Survey (APASS) at Data Release 10

Stephen Levine

900 E. Hilltop Avenue, Flagstaff, AZ 86001; selevi@gmail.com

Abstract

The AAVSO Photometric All-Sky Survey (APASS) was designed to provide precise calibrated photometry in Johnson B and V and Sloan g', r', and i' passbands for stars over all the sky within the magnitude range from 7 to 17 .

Data Release 10 of APASS represents an improved and full re-reduction of all of the data collected since the survey started in 2009. We provide an overview of the project aims, methods, and instrumentation. We look at some of the ways APASS is already being fruitfully used by both the variable star and the broader astronomical communities.

Kepler and K2: Spawning a Revolution in Astrophysics from Exoplanets to Supernovae

David Ciardi
Chief Scientist, NASA Exoplanet Science Institute, Caltech/ IPAC-NExScI, 1200 East California Avenue, Mail Code: 10022, Pasadena, CA 91125; ciardi@ipac.caltech.edu

Abstract

Launched in 2009, the Kepler Mission helped to redefine our understanding of the extra-solar planets and began a revolution in how we view our own Solar System. But Kepler was more than an exoplanet finding mission, Kepler helped to redefine how we looked at stars and greatly improved upon our knowledge of how stars work and evolve. After Kepler suffered a mechanical failure which nearly ended the mission, Kepler was reborn at K2. Unlike Kepler which just stared at spot on the sky, K2 has pointed at 11 different areas of the galaxy and has enabled studies not previously possible with Kepler, including supernovae studies and searches for planets with microlensing events. I present an overview of the results of Kepler and K2 and how this is leading us to the future with TESS.

Exploration of the Time Domain

George Djorgovski

California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125; george@astro.caltech.edu

Abstract

Time-domain astronomy is one of the most active and growing areas of astronomical research today, thanks to the new generation of synoptic sky surveys, and leading to LSST. Catalina Real-Time Transient Survey (CRTS; http://crts. caltech.edu) is systematically exploring and characterizing the variable sky since 2008, with the archival data going back to 2005. The survey covers the total area of $\sim 33,000$ deg2, down to $\sim 19-21 \mathrm{mag}$ per exposure, with time baselines from 10 min to ~ 10 years, and growing; there are now typically $\sim 200-400$ exposures per pointing, and coadded images reach deeper than ~ 23 magnitude. The survey has so far detected over 13,000 unique, high-amplitude transients, including $\sim 4,000$ confirmed or likely supernovae, nearly $2,000 \mathrm{CVs}$ (the great majority of them previously uncatalogued), about 4,000 blazars and other flaring AGN, and a broad variety of other types of objects. Many of these objects can benefit from a follow-up by the amateur community. CRTS is intended to be a data resource for the entire astronomical community. We have a completely open data policy: all discovered transient events are published in real time with no proprietary delay period, and all data are made public, in order to better serve the entire community, and maximize the scientific returns. This includes an archive of ~ 500 million

light curves, which are being updated continuously. This is an unprecedented data set for the exploration of the time domain, in terms of the area, depth, and temporal coverage. Numerous scientific projects have been enabled by this data stream, including: discoveries of ultraluminous and otherwise peculiar SNe; unusual CVs and dwarf novae; mapping of the structure in the Galactic halo using RR Lyrae; variability-based discovery of AGN and probes of their physics; and so on.

Clear-sky Forecasting for Variable Star Observers

Frank Dempsey

RR \#1, 3285 Sideline 20, Locust Hill, ON L0H 1J0, Canada; cosmicfrank99@gmail.com

Abstract

Many amateur astronomers seem to rely on computer model-generated weather forecasts for clear sky predictions and get frustrated by imperfect forecasts. It is worthwhile to consider the shortcomings of computer model forecasts and look at some resources to help the variable star observer plan for clear skies, whether for visual observers wanting to get an observation of a particular target star in long-term light curve programs, multi-hour observations of short-period pulsating variables or eclipsing binaries, or photometry. I discuss difficult-to-forecast factors including low clouds caused by local terrain and topographic effects, persistent low-level stratocumulus during the cold season, fog, post-cold front dry intrusions, pre-warm front waves of clouds, gradual sinking and clearing of cloud layers, jetstream-level cirrus, debris clouds persisting from upwind thunderstorms and distant thunderstorm complexes, large-scale blocking patterns, and other situations to hopefully help the variable star observer to make optimum use of limited time under clear skies.

\section*{Cepheids and Miras: Recent Results and Prospects for the Era of Large Surveys}

Lucas Macri
Texas A\&M University, 5313 Riviera Court, College Station, TX 77845; macri.lucas@gmail.com

Abstract

I present results from two recently-completed projects: (1) the determination of the Hubble constant with a total uncertainty of only 2.4%, using the Hubble Space Telescope to discover more than 2,000 Cepheids and calibrate the luminosity of white-dwarf supernovae; (2) the discovery and classification of over 1,800 Miras in M33 using a new technique that outperforms traditional methods when dealing with noisy and sparsely-sampled light curves. I discuss prospects for the Extragalactic Distance Scale in the era of large surveys, focusing on Gaia and LSST.

Gravitational Radiation in ES Ceti

Joseph Patterson

25 Claremont Avenue, Apt. 7C, New York, NY 10027;
jop@astro.columbia.edu

Abstract

We present time-series photometry of ES Ceti, a close binary with an orbital period of 10.3 minutes. The star is a member of the "AM CVn" class of cataclysmic variable, in which the two components are both white dwarfs, and the transferred matter is pure helium. Photometry during 2001-2016 shows that the orbital period is rapidly increasing, with $\mathrm{P} /(\mathrm{dP} / \mathrm{dt})$ $=10$ million years. This is consistent with the hypothesis that the mass transfer and binary evolution are driven by gravitational radiation, and appears to be the first such demonstration in any cataclysmic variable.

Observing the Low States of VY Scl Stars

Linda Schmidtobreick

Eurpean Southern Observatory, ESO Vitacura, Alonso de Córdova 3107, Vitacura, Casilla 19001, Santiago de Chile, Chile; lschmidt@eso.org

Abstract Novalikes just above the period gap play an important role in our understanding of the evolution of cataclysmic variables. Most of them belong to the group of SW Sextantis stars and experience very high mass transfer rates. This results in extremely hot, bright and dense accretion discs which do not allow to observe the stellar components in these binaries. To therefore get information about the physical parameters of these objects, i.e. the masses of the two components, the stars need to be observed in a low state when the accretion is at least partly suppressed. Many of the novalike stars are known to experience such low states that are also called VY Scl low states.

Within a large campaign, we have monitored these stars photometrically and triggered time resolved spectroscopic ToO observations when they went into a low state. I present some results of this campaign and would like to discuss the possibility of restarting it with the help of the AAVSO.

Advances in Exoplanet Observing by Amateur Astronomers

Dennis M. Conti
141 E. Bay View Drive, Annapolis, MD 21403; dennis_conti@ hotmail.com

Abstract

This past year has seen a marked increase in amateur astronomer participation in exoplanet research. This has ranged from amateur astronomers helping professional astronomers confirm candidate exoplanets, to helping refine the ephemeris of known exoplanets. In addition, amateur astronomers have been involved in characterizing such exotic objects as disintegrating planetesimals. However, the involvement in such pro/am collaborations has also required that amateur astronomers follow a more disciplined approach to exoplanet observing.

This talk will discuss the results of some of these pro/am collaborations, as well as the evolution of best practices and software tools that have resulted. In addition, it will present recent advances in speckle interferometry, shaped aperture masks, and charge injection devices that may help overcome

the seeing, diffraction, and differential magnitude limitations that amateur astronomers face in direct exoplanet imaging. Finally, the status of an AAVSO database for storing exoplanet observations will be presented.

The Impact of Large Optical Surveys on Stellar Astronomy and Variable Star Research

Zeljko Ivezic

University of Washington, 2555 NE 85th Street, Seattle, WA 98115; ivezic@astro.washington.edu

Abstract

The advent of large optical surveys, such as SDSS, ongoing Pan-STARRS and Gaia, and soon to start LSST, has delivered unprecedentedly large and precise datasets. These new data have already enabled major new research areas and the impact of surveys is expected to grow further over the next few decades. I discuss how to use public data, such as from SDSS SkyServer, to select most interesting stars for followup, and show a few specific examples of my collaboration with amateur variable star observers.

Engaging AAVSO members in Stellar Astrophysics Follow-up from The Evryscope Data

Octavi Fors

Nicholas M. Law
Jeffrey Ratzloff
Henry Corbett
Department of Physics and Astronomy, University of North
Carolina at Chapel Hill, Chapel Hill, NC 27599;
octavi@live.unc.edu

Daniel del Ser

Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 and Departament de Física Quàntica i Astrofísica, Institut de Ciències del Cosmos (ICCUB), Universitat de Barcelona, Martí Franquès 1, E08028 Barcelona, Spain

Ward Howard

Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; octavi@live.unc.edu

Stephen Cox

Renaissance Computing Institute, 100 Europa Drive, Suite 540, Chapel Hill, NC 27517

Abstract

The Evryscope is a gigapixel-scale array of 24 telescopes which covers an instantaneous 8,640-square-degree field-of-view at two-minute cadence. This telescope opens a new parameter space in time-domain astronomy, trading instantaneous depth ($\mathrm{g} \sim 16 \mathrm{mag}$) and sky sampling (~ 13 ") for continuous coverage (97% survey time efficiency) of the largest sky area of any active survey.

The system is obtaining 25,000 photometric measurements per target and per year, with a per-exposure 100-degree

declination range. The Evryscope photometric precision is one percent-level at two-minute cadences on bright ($\mathrm{g}<12$) stars, and ~ 5 mmags ~ 12-minute binning.

The first science case The Evryscope is undertaking is the first large-scale survey of transiting planetesimals around the 4,500+ brightest white dwarfs (WDs). As byproducts of this survey long-term measurements of WDs pulsations, eclipsing WD binaries and periodically variable WDs will be obtained. Other science cases already recorded in The Evryscope dataset and to be started analyzed in the next weeks are: transiting habitable-zone rocky planets around the $\sim 5,000$ nearby M-dwarfs, nearby microlensing events, increasing TESS long-period giant planets return, the discovery and characterization of a wide range of stellar variability, including the measure of the mass-radius relation by using a complete inventory of eclipsing binary systems, detecting young stars by their flare behavior, detecting stellar merger events, accreting compact objects, and exotic pulsators.

The Evryscope was deployed at CTIO in May 2015. The telescope is fully operational, streaming raw imaging data per night at $109 \mathrm{MB} / \mathrm{sec}$. All data are stored and analyzed on-site by a high-speed server. Two more Evryscopes are planned to be deployed in near future: at Mount Laguna Observatory (collaboration with SDSU) and in the High Arctic (collaboration with NARIT and University of Toronto).

The Evryscopes are capable of monitoring almost every star brighter than 16 th magnitude. After the discovery of variability of any type, the next step is follow-up, whether to confirm a transiting planet, obtain multi-color light curves of a microlensing events, or cover any of the host of stellar variability phenomena. I discuss the vital role AAVSO members could have in obtaining these observations. I show some characteristic examples of the kind of variable stars light curves which are in The Evryscope dataset.

Using AAVSO Tools to Calibrate Secondary Standard Stars

Michael D. Joner

Brigham Young University, Department of Physics and Astronomy, N488 ESC, Provo, UT 84602; xxcygni@gmail.com

Abstract

New discoveries often make it necessary to work in fields without adequate standard comparison sequences for coverage of faint magnitudes or atypical color ranges. Using available tools provided by the AAVSO such as VPHOT, Transform Generator, Transform Applier, and APASS, a method is outlined to add additional stars to standard comparison star sequences within a science field. Results are presented for BVRI secondary standards in the field of the active galaxy NGC 4151 and the recent supernova SN 2016 coj in NGC 4125.

Solar Data in the \mathbf{J} and \mathbf{H} Bands

Rodney Howe

3343 Riva Ridge Drive, Fort Collins, CO 80526; ahowe@frii.com
Abstract Early work of stellar astronomers established the
nomenclature for the infrared wavelength bands in the 1,000 to $5,000 \mathrm{~nm}$ range known as $\mathrm{J}, \mathrm{H}, \mathrm{K}, \mathrm{L}$, and M . This study is using the AAVSO SSP-4 photometer to collect solar data in the J and H bands, where the central wavelengths of these bands are roughly $1,300 \mathrm{~nm}$ for the J , and $1,600 \mathrm{~nm}$ for the H band. The continuum radiation from the sun is formed at the deepest level in the sun around 40 km from the surface at $1,600 \mathrm{~nm}(\mathrm{H}$ band), and then the spectral continuum begins as the height increases with increasing wavelength in the infrared spectrum. From data collected here the H band has slightly larger values than the J band, however, there are distinct cross-overs on different days of observing. The telescope being used is a $60-\mathrm{mm}$ LUNT, a blocking factor of 12 with a tilt-etalon filter (https://luntsolarsystems.com/product/ls60tds/) which can be adjusted to look at "white light"; in that configuration the SSP-4 photometer captures the sun's disc centered in the SSP-4 eyepiece (1 inch focal length $\sim 25.4 \mathrm{~mm}$). The Orion equatorial mount has an Astro-view Right Accession motor, which tracks the sun, and for an average data capture session of about 10 minutes, it is quite stable. Capturing data in the early morning is best as the weight of the SSP-4 helps the little RA motor, rather than in the afternoon when the balance would be against the direction of the earth's rotation.

Variations in the Orbital Light Curve of the Magnetic Cataclysmic Variable Star QQ Vulpeculae

Sanaea Cooper Rose

Wellesley College, 106 Central Street, Wellesley, MA 02481 and Maria Mitchell Observatory, 3 Vestal St, Nantucket, MA 02554; srose2@wellesley.edu

Abstract

Magnetic cataclysmic variable stars have brightness variations that repeat with each revolution of the two stars about the center of mass of the system. However, in the case of QQ Vulpeculae, this brightness variation pattern changes in the long term. This study makes use of two decades worth of

data from the Roboscope Telescope as well as data from the American Association of Variable Star Observers' (AAVSO) database to examine the long-term evolution of QQ Vul's phase curves. Nightly observations using the Maria Mitchell Association Vestal and Loines Observatory supplemented this analysis by clarifying short-term brightness variation. The long-term data were divided into four commonly observed behavioral types ranging from a double-peaked curve of ~ 15.5 magnitude to $\mathrm{a} \sim 15.0$ magnitude curve that had a primary minimum and a slow, linear rise in brightness in place of the secondary minimum. The nightly data kept within the confines of these categories, though the secondary minimum in the nightly data never vanished. No periodicity was found in the long-term variations. The model often invoked to explain the double-peaked curve consists of single-pole accretion in which a partial self-eclipse causes the secondary minimum and cyclotron beaming causes the primary minimum. However, the long-term variation may indicate a changing accretion rate, which may manifest itself in changes to the shape, size, or location of the accretion spot on the white dwarf such that it lessens or removes the secondary minimum. This project was supported by the NSF REU grant AST-1358980, the Massachusetts Space Grant, and the Nantucket Maria Mitchell Association.

Coast-to-Coast Photometry: A Study in Consistency

Tom Calderwood

1184 NW Mt. Washington Drive, Bend, OR 97703; tjc@cantordust.net

Abstract

Two photometric telescopes on opposite sides of North America are used to collect same-night data in Johnson B and V for selected stars. We find close agreement between the instruments, with a median difference of 4 millimagnitudes in twenty-two paired measurements. Data were gathered with Optec SSP3 and SSP5 photometers, and corrected for transformation and principal extinction in both bands, and for second-order extinction in B.

[^0]: Figure 4. Light curves of the 100 discovered variable stars, cont.

[^1]: Figure 4. Light curves of the 100 discovered variable stars, cont.

[^2]: Figure 4. Light curves of the 100 discovered variable stars, cont.

