Revisiting the O'Connell Effect in Eclipsing Binary Systems (Abstract)
Volume 37 number 2 (2009)
- Nicholas J. Wilsey
- Matthew M. Beaky
Abstract
(Abstract only) Many eclipsing binary light curves exhibit a feature known as the O’Connell effect, where the two out-of-eclipse maxima are unequally high. The effect is entirely unexpected, because the two side-by-side configurations of the components should appear equally bright from our line of sight. Several theories have been proposed to explain the effect, including asymmetrically distributed starspots, clouds of circumstellar dust and gas, or a hot spot caused by the impact of a mass-transferring gas stream. Currently, most published models of systems with asymmetric maxima incorporate starspots to rectify their models to fit the observational data. However, the limitations of starspot solutions, as well as other possible explanations for the asymmetry, are rarely discussed. In order to revitalize the study of the O’Connell effect, the astronomy program at Truman State University in Kirksville, Missouri, has initiated a project to construct complete BVRI light curves of poorly studied eclipsing binary systems exhibiting the O’Connell effect, including V573 Lyr and UV Mon. We are also exploring methods of applying Fourier analysis to large, all-sky databases to extract correlations that may help to evaluate competing theories for explaining the effect.