Variations in the Orbital Light Curve of the Magnetic Cataclysmic Variable Star QQ Vulpecula (Abstract)
Volume 45 number 1 (2017)
- Sanaea Cooper Rose
- Wellesley College, 106 Central Street, Wellesley, MA 02481 and Maria Mitchell Observatory, 3 Vestal St, Nantucket, MA 02554; srose2@wellesley.edu
Abstract
(Abstract only) Magnetic cataclysmic variable stars have brightness variations that repeat with each revolution of the two stars about the center of mass of the system. However, in the case of QQ Vulpecula, this brightness variation pattern changes in the long term. This study makes use of two decades worth of data from the Roboscope Telescope as well as data from the American Association of Variable Star Observers (AAVSO) database to examine the long-term evolution of QQ Vul’s phase curves. Nightly observations using the Maria Mitchell Association Vestal and Loines Observatory supplemented this analysis by clarifying short-term brightness variation. The long-term data was divided into four commonly observed behavioral types ranging from a double peaked curve of ~15.5 magnitude to a ~15.0 magnitude curve that had a primary minimum and a slow, linear rise in brightness in place of the secondary minimum. The nightly data kept within the confines of these categories, though the secondary minimum in the nightly data never vanished. No periodicity was found in the long-term variations. The model often invoked to explain the double peaked curve consists of single pole accretion in which a partial self-eclipse causes the secondary minimum and cyclotron beaming causes the primary minimum. However, the long-term variation may indicate a changing accretion rate, which may manifest itself in changes to the shape, size, or location of the accretion spot on the white dwarf such that it lessens or removes the secondary minimum. This project was supported by the NSF REU grant AST-1358980, the Massachusetts Space Grant, and the Nantucket Maria Mitchell Association.